

Exploring a Net Centric Architecture using the Net
Warrior Airborne Early Warning and Control Node

Kate Foster, Adam Iannos, Geoff Lawrie, Peter Temple and Brad Tobin

Air Operations Division
Defence Science and Technology Organisation

DSTO-TR-2093

ABSTRACT

Network Centric Warfare experimentation is required in order to transform the Australian
Defence Force into a net centric force. One area of experimentation is net centric software
architectures, particularly component-based systems and middleware. The Airborne Early
Warning & Control Mission System Testbed (AEW&C MST) enables such experimentation to
be conducted and is overviewed in this report. The AEW&C MST is also one node in the Net
Warrior Initiative, which aims to conduct net centric experimentation with real systems,
testbeds and simulators across DSTO. This report discusses Net Warrior and the role of the
AEW&C MST as the AEW&C node.

RELEASE LIMITATION

Approved for public release

Published by

Air Operations Division
DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

Telephone: (08) 8259 5555
Fax: (08) 8259 6567

© Commonwealth of Australia 2007
AR-014-085
December 2007

APPROVED FOR PUBLIC RELEASE

Exploring a Net Centric Architecture using the Net
Warrior Airborne Early Warning and Control Node

Executive Summary

Organisations implementing a net centric approach aim to achieve effective and
efficient outcomes by capitalising on information sharing for better situational
awareness, improved decision making and enhanced collaboration. The main driver
for net centricity has been the recent progress achieved in information and
communication technologies. These technologies can be considered as essential enablers
for net centric systems and organisations will be required to adapt their structure and
processes in order to exploit them.

Network Centric Warfare (NCW) applies the idea of net centricity to military
operations and it is networking that underlies the information advantage that NCW
may provide. The Australian NCW Concept focuses on an effects-based approach with
the aim of increasing operational tempo and improving agility by using information to
maximise operational effect and facilitate collaboration.

In alignment with Defence’s approach to implementing NCW through ‘learning by
doing’, the DSTO Net Warrior Initiative was conceived to address, through
experimentation, new and evolving net centric capabilities and mission system
technologies to enhance ADF joint warfighting capabilities. This experimentation will
be conducted with real systems, testbeds and simulators across DSTO and, eventually,
across Defence. Boeing Australia is also involved in Net Warrior through an Interactive
Project Agreement concerning mission systems in NCW environments. Such
experimentation will be applied to operational, systems and technical elements of
NCW and will enable Net Warrior to provide advice to Defence regarding the extent to
which it needs to consider and implement particular NCW concepts and technologies.

One of the nodes in Net Warrior is the Airborne Early Warning & Control Mission
System Testbed (AEW&C MST). The AEW&C MST represents the Wedgetail AEW&C
capability, which will provide the ADF with an enhanced surveillance and control
capability when delivered. The AEW&C MST has been developed to support
evaluation of Wedgetail mission computing while providing the freedom to explore
the integration of NCW enabling technology into Wedgetail and other platforms.
Development of the AEW&C MST and the associated research program is conducted
in DSTO’s Air Operations Division (AOD) under task 07/044 and is sponsored by
DMO. The AEW&C MST is hosted within the AOD Mission System Research Centre
(MSRC) along with a range of other mission system testbeds.

The transformation to an Australian net centric force requires a shift in the way
systems are procured, built and used, so that information can flow through a changing

network of heterogeneous nodes, each with its own information requirements. For
example, aircraft, due to their mobility, will have changing contexts and will require
dynamic connections to other nodes. The AEW&C MST provides the infrastructure to
conduct research into how information flows can be agile and adaptable in dynamic
and distributed environments.

Net centric environments are underpinned by a range of standards and technologies.
Such technologies that are important to the Wedgetail capability include component-
based systems, Service Oriented Architectures (SOAs), middleware and frameworks.
Component-based architectures, supported by middleware and built on top of
frameworks, are able to satisfy design needs of applications to produce stable mission
and net centric systems. Wedgetail mission computing and the AEW&C MST are built
on the Boeing Australia Software Architecture Framework (SAF), a component-based,
distributed computing, middleware environment. The SAF employs an SOA approach,
with common software component mechanisms and interfaces encapsulated within a
patterned framework. The SAF provides access to resources, such as communication
through the Common Object Request Broker Architecture (CORBA). SOA concepts,
when applied to the needs of net centricity, are able to achieve flexible and adaptable
operational effectiveness through the integration of disparate systems and capabilities.

The components of the AEW&C MST are the stimulation environment, mission
computing components and monitoring components. The stimulation environment,
based on the Engenuity STAGE product, simulates the environment of an AEW&C
aircraft and models its sensors. Mission computing components represent adaptations
of components from Wedgetail mission computing, while monitoring components
provide interfaces for observing the information received and processed by the other
components of the AEW&C MST.

Experimentation with the AEW&C MST will investigate technologies that are
important for enabling the ADF to become a net centric force. Results from this
experimentation will enable Defence to be better informed when acquiring capabilities
that interoperate with other systems.

Authors

Kate Foster
Air Operations Division

Dr Kate Foster is a Research Engineer with DSTO's Air
Operations Division. Her current work involves support to the
Airborne Early Warning & Control acquisition, research into the
evaluation of component-based and distributed software
architectures, and participation in the DSTO Net Warrior
initiative to experimentally investigate aspects of net centricity.
Kate obtained a Bachelor of Engineering (Electrical and
Electronics) (Hons) and a PhD from Swinburne University in
Melbourne, Australia.

____________________ __

Adam Iannos
Air Operations Division

Adam Iannos obtained a Bachelor of Engineering (Computer
Systems) (Hons) from the University of Adelaide, Australia in
2001. In 2002, he joined the Air Operations Division at DSTO as
a Professional Officer and his work involves support to the
Airborne Early Warning & Control acquisition, New Air Combat
Capability acquisition, distributed computing design and analysis,
and investigating aspects of net centricity.

____________________ __

Geoff Lawrie
Air Operations Division

Geoff Lawrie is the Head of AMS Networks in Airborne Mission
Systems Branch within the Air Operations Division of the System
Sciences Laboratory, DSTO. He has a degree in Mechanical
Engineering. His interests are airborne early warning and control,
network centric warfare and advanced information processing.

____________________ __

Peter Temple
Air Operations Division

Peter Temple is a senior research engineer in the DSTO Air
Operations Division. He has a Bachelor of Engineering (Electrical)
(Hons) and a Bachelor of Science (Mathematics), and has worked
for DSTO for 18 years in the field of airborne mission system

integration. His current work includes acquisition and through-life
support for the Wedgetail Airborne Early Warning and Control
project, and research related to the DSTO Net Warrior NCW
initiative.

____________________ __

Brad Tobin
Air Operations Division

Brad Tobin obtained a Bachelor of Engineering (Computer
Systems) (Hons) and a Bachelor of Mathematical and Computer
Science majoring in Applied Mathematics and Computer Science
from the University of Adelaide, Australia in 2005. In 2006 he
joined the Air Operations Division at DSTO as a Research
Engineer, where his current work interests are support to the
Airborne Early Warning & Control acquisition, the investigation
of tactical communication, and aspects of net centricity.

____________________ __

i

Contents

ACKNOWLEDGEMENTS ..III

ABBREVIATIONS ..IV

1. INTRODUCTION ... 1

2. NETWORK CENTRIC WARFARE AND AUSTRALIAN DEFENCE....................... 2
2.1 Overview .. 2
2.2 Net Centricity... 2
2.3 Network Centric Warfare .. 6
2.4 Australian Network Centric Warfare .. 8
2.5 Science and Technology for Australian Network Centric Warfare............... 11
2.6 Summary... 12

3. NET WARRIOR AND THE AEW&C NODE... 13
3.1 Net Warrior... 13
3.2 AEW&C Node in Net Warrior .. 14

3.2.1 Wedgetail AEW&C ... 14
3.2.2 AEW&C Mission System Testbed Motivation 16
3.2.3 AEW&C Mission System Testbed Objectives...................................... 17

3.3 Summary... 21

4. COMPONENT-BASED ARCHITECTURES AND MIDDLEWARE....................... 22
4.1 Overview .. 22
4.2 Engineering Approaches and Methodologies ... 22

4.2.1 Evolution of Engineering Approaches ... 22
4.2.2 Defence Architecture Framework ... 23
4.2.3 Component-based Software Engineering .. 25

4.3 Architectural Approaches and Reference Models .. 30
4.3.1 Software Architecture ... 30
4.3.2 Service Oriented Architectures.. 30
4.3.3 Technical Reference Models... 32

4.4 Reference Architectures, Patterns, Middleware and Frameworks 34
4.4.1 Reference Architectures.. 34
4.4.2 Patterns ... 35
4.4.3 Middleware .. 36
4.4.4 Frameworks.. 38

4.5 Summary... 39

5. AEW&C MISSION SYSTEM TESTBED... 40
5.1 AEW&C Mission System Testbed Architecture ... 40

5.1.1 Common Object Request Broker Architecture 40
5.1.2 Software Architecture Framework.. 41

ii

5.2 AEW&C Mission System Testbed Overview.. 44

6. SUMMARY .. 47

7. REFERENCES... 48

APPENDIX A: AEW&C MISSION SYSTEM TESTBED COMPONENTS 54
A.1. Mission Computing ... 54

A.1.1 Track Manager.. 54
A.1.2 Rosetta Adapter.. 55
A.1.3 Ownship Status .. 56

A.2. Stimulation Environment ... 56
A.2.1 Track Source Adapter.. 56
A.2.2 Air Vehicle Model.. 57
A.2.3 STAGE ... 57

A.3. Monitoring... 58
A.4. Commercial Off-The-Shelf... 58

A.4.1 STAGE ... 59
A.4.2 Rosetta ... 60
A.4.3 Tactical Display Framework .. 61

iii

Acknowledgements
The authors thank Derek Dominish of Boeing Australia for the many discussions
regarding the technical content of this report. The effort of Les Vencel of VCORP
Consulting, Bill Spencer of DMO, and Lindsay Pears and Brad Wheatley of Boeing
Australia in reviewing the report is greatly appreciated.

iv

Abbreviations
ACE ADAPTIVE Communication Environment

ADAPTIVE A Dynamically Assembled Protocol Transformation, Integration, and
eValuation Environment

ADF Australian Defence Force

ADGE Air Defence Ground Environment

ADO Australian Defence Organisation

AEW&C Airborne Early Warning & Control

AFRL Air Force Research Laboratory

AISR ECC Aerospace Intelligence Surveillance and Reconnaissance Enterprise
Capability Centre

AMS Airborne Mission Segment

AOD Air Operations Division

API Application Programming Interface

ATSL Approved Technology Standards List

AWD Air Warfare Destroyer

C2 Command and Control

C3ID Command Control Communications & Intelligence Division

CBSA Component-Based Software Architecture

CBSE Component-Based Software Engineering

CCM CORBA Component Model

CDR Common Data Representation

CEC Cooperative Engagement Capability

CFBLNet Coalition Federated Battle Lab Network

CIAO Component Integrated ACE ORB

CIOG Chief Information Officer Group

v

CLIP Common Link Integration Processing

CLR Common Language Runtime

CODEC Coder-Decoder

COM Component Object Model

COP Common Operating Picture

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf

DAF Defence Architecture Framework

DARPA Defense Advanced Research Project Agency

DDS Data Distribution Service

DIE Defence Information Environment

DII Defence Information Infrastructure

DIS Distributed Interactive Simulation

DLS-EC Dual Link Simulator with Extended Capability

DOC Distributed Object Computing

DoDAF Department of Defense Architecture Framework

DSS Decision Support System

DSTO Defence Science & Technology Organisation

EO Electo Optics

ESM Electronic Support Measures

EWRD Electronic Warfare & Radar Division

EWSP Electronic Warfare Self Protection

FCS Future Combat System

FROG Forwarding Rules Object Gateway

GIG Global Information Grid

vi

GIOP General Inter-ORB Protocol

GMTI Ground Moving Target Indicator

GUI Graphical User Interface

IBS Integrated Broadcast Service

ICD Interface Control Document

ICT Information and Communication Technologies

IDE Integrated Development Environment

IDL Interface Description Language

IFF Identify Friend Foe

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

IPA Interactive Project Agreement

ISAR Inverse Synthetic Aperture Radar

ISRD Intelligence Surveillance & Reconnaissance Division

JMMTIDS Joint Moving Map Tactical Information Display System

JORN Jindalee Operational Radar Network

JSF Joint Strike Fighter

JTIDS Joint Tactical Information Distribution System

JTRS Joint Tactical Radio System

JU JTIDS Unit

LOD Land Operations Division

MCDL Multi-Channel Data Link

MCS Mission Computing Subsystem

MIL-STD Military Standard

MOD Maritime Operations Division

vii

MODAF Ministry of Defence Architecture Framework

MSI Multi Sensor Integration

MSRC Mission System Research Centre

MST Mission System Testbed

NAF NATO Architecture Framework

NCW Network Centric Warfare

NCWPO Network Centric Warfare Program Office

NCOIC Network Centric Operations Industry Consortium

NCOW-RM Network Centric Operations and Warfare Reference Model

NIF NCOIC Interoperability Framework

NFRM Netforce Reference Model

NSI NCW S&T Initiative

OFP Operational Flight Program

OMG Object Management Group

OO Object Oriented

OODA Observe Orient Decide Act

ORB Object Request Broker

OS Operating System

OSI Open System Interconnection

QoS Quality of Service

PDU Protocol Data Unit

RIG Regional Information Grid

RMI Remote Method Invocation

RPDE Rapid Prototyping, Development and Evaluation

RQL Real-Time Query Language

S&T Science and Technology

viii

SAD Situation Awareness Display

SAF Software Architecture Framework

SAR Synthetic Aperture Radar

SARM Strategic Architecture Reference Model

SGT Scenario Generation Toolset

SIM Simulation Engine

SIRST Surveillance InfraRed Search and Track

SM Scenario Manger

SOA Service Oriented Architecture

SoS System of Systems

SoSE System-of-Systems Engineering

SQL Sequential Query Language

STAGE Stimulation Toolkit and Generation Environment

TAAATS The Australian Advanced Air Traffic System

TAO The ACE ORB

TCP/IP Transmission Control Protocol/Internet Protocol

TDF Tactical Display Framework

TDL Tactical Data Link

TIE Tactical Information Exchange

TRM Technical Reference Model

TTNT Tactical Targeting Network Technology

UAV Unmanned Aerial Vehicle

UCAV Unmanned Combat Aerial Vehicle

UDP User Datagram Protocol

US DoD United States Department of Defense

ix

WAN Wide Area Network

WDL Weapon Data Link

WIRE Wedgetail Integration Research Environment

WSD Weapon Systems Division

WSOA Weapon Systems Open Architecture

XML eXtensible Markup Language

DSTO-TR-2093

1

1. Introduction

The Australian Defence Force (ADF) is currently implementing the Australian Network
Centric Warfare (NCW) concept. In order for this to be successful, the ADF requires advice
regarding the underlying technologies that enable NCW. This report is concerned with
technologies that facilitate the design and implementation of robust software architectures
and mission systems in net centric environments.

Two areas of work are presented that enable experimentation to be conducted with net
centric software architectures. The first is the Net Warrior Initiative, which aims to conduct
net centric experimentation with real systems, testbeds and simulators across the Defence
Science & Technology Organisation (DSTO). Net Warrior is a multi divisional response to
the challenge of enhancing the joint warfighting capability of the ADF. Boeing Australia is
also involved through an Interactive Project Agreement regarding mission systems in
NCW environments.

The second area of work is the Airborne Early Warning & Control Mission System Testbed
(AEW&C MST), a component-based and distributed system built on CORBA (Common
Object Request Broker Architecture) middleware and the Boeing Australia Software
Architecture Framework (SAF). Development of the AEW&C MST and the associated
NCW research program is conducted in DSTO’s Air Operations Division (AOD) under the
task 07/044 and is sponsored by DMO. The AEW&C MST is hosted by the AOD Mission
System Research Centre (MSRC) and allows experimentation into the performance and
integration of the mission system for the new Australian AEW&C capability and is a node
within Net Warrior.

The motivation for this experimentation is presented in Section 2 with a discussion of
NCW and its adoption by Australian Defence. Section 3 discusses Net Warrior, the
Wedgetail AEW&C acquisition and the role of the AEW&C MST as the Net Warrior
AEW&C node. It is argued that experimentation with high fidelity representations of
platforms is required in order for NCW to be successfully implemented.

Technologies and methodologies appropriate to net centric software architectures used in
the AEW&C MST include component-based systems, Service Oriented Architectures
(SOAs), middleware and frameworks. These are discussed in section 4. Two
manifestations of the technologies reviewed in section 4 that are relevant to the AEW&C
MST are CORBA and the SAF. Section 5 overviews these and the architecture of the
AEW&C MST.

DSTO-TR-2093

2

2. Network Centric Warfare and Australian Defence

2.1 Overview

This section introduces the concepts of net centricity and Network Centric Warfare (NCW)
with a focus on their application within the Australian Defence Force (ADF) and science
and technology for the ADF.

2.2 Net Centricity

A number of definitions for net centricity exist, however many of these have been
criticised for lacking clarity [Fewell & Hazen 2003]. Cebrowski [2003] argues that at this
stage net centricity is still a concept and, as such, only a working definition can be
articulated. Net centricity involves the simple idea that information sharing is potentially
of value to an organisation. The aim is to enable the organisation to improve its
information position and enhance the capabilities of its decision makers. The net centric
approach aims to achieve effective and efficient outcomes by capitalising on information
sharing for better situational awareness, improved decision making and enhanced
collaboration [Knight et al. 2006].

The main driver for net centricity has been the rapid progress achieved in the field of
information and communication technologies (ICT) in the second half of the 20th century
[Cebrowski & Garstka 1998]. However, merely constructing a superior network is not
sufficient for an organisation to become net centric. Net centricity requires an organisation
to adapt its structure and processes to exploit ICT and take full advantage of the benefits
that it promises. Therefore, communications infrastructure can be considered as an
essential enabler for net centric systems.

The concept of net centricity has been widely viewed as a network of nodes: a set of nodes
(consisting of people, devices, information and services) interact using a communications
network to optimise the use of resources and achieve synchronisation of effects. This
concept can be applied to various domains, such as commerce, education and military
operations.

From a study of the successful usage of the Internet and other effective networks
(including social networks), Fewell and Hazen [2003] emphasise the organisational aspects
of net centricity and propose the following be included in its definition:

• Nodes may be widely dispersed geographically, but are still able to interact.

• Use of the network is altruistic and each node considers the benefit of its actions to
other nodes.

• The network of nodes is considered to be a community and each node, while
autonomous, has a sense of responsibility to the community.

DSTO-TR-2093

3

The last two points imply that a reasonable amount of trust exists between nodes and
Fewell and Hazen [2003, p. 33] argue that ‘…the difference between a network-enabled
application and a net-centric system depends on the relationship between nodes’.

Cebrowski and Garstka [1998] suggest that implementing net centricity requires
establishing three grids: an information grid to provide a backplane for computing and
communications; a sensor grid to perceive the environment at high speed; and a
transaction or engagement grid closely coupled with command and control systems to
enable nodes to act efficiently and effectively in the environment.

Keus [2005] uses the simple network-node paradigm as the basis of the Netforce Reference
Model (NFRM). In this model, the term netforce is used to describe the total collection of
nodes that together perform a specific network centric capability, while network refers to
the communications infrastructure. This is illustrated in Figure 2–1.

The NFRM provides a set of principles with the aim of enabling systems and procedures to
be developed in net centric environments. These netforce principles comprise node types,
properties and interactions, and netforce functions and services. The NFRM characterises
net centricity as both information and network driven:

• Data and information is collected, processed and interpreted.

• Quality information is provided through the network to decision makers.

• Cooperative and synchronised decision making creates tailored measures.

• These tailored measures are executed in a timely, accurate and synchronised manner.

Figure 2–1. The netforce and the network. Source: [Keus 2005]

DSTO-TR-2093

4

This characterisation is represented diagrammatically in Figure 2–2, which maps aspects of
net centricity to elements of the observe-orient-decide-act (OODA) loop [Boyd 1996]. From
this characterisation, the following six basic node types (as shown in Figure 2–1) are
defined:

• Collector (C): collects data and information.

• Information Provider (I): manipulates data and information (e.g. processes, interprets,
associates, correlates and fuses) and provides that information to other nodes in the
required format.

• Decider (D): uses available data and information to decide between different actions.

• Effector (E): puts into effect the decisions that result from the decision making process.

• Communicator (Com): transfers data and information using various means.

• Supporter (S): performs a number of actions that enable net centric operations to be
performed.

Figure 2–2. Mapping net centricity to the OODA loop. Source: [Keus 2005]

DSTO-TR-2093

5

The nature and behaviour of each node is characterised by a number of properties (which
may themselves consist of sub-properties). The NFRM specifies the following as a basic set
of properties:

• Identity: a unique identifier that distinguishes each node from other nodes in the
netforce.

• Status: specifies the operational status of a node.

• Capability: indicates the operational capability of a node. The NFRM takes a Quality of
Service (QoS) approach to specifying capability.

• Structure: as nodes may consist of sub-nodes, the structure property details a node’s
internal structure. For example, an aircraft can be considered as a composite node that
consists of sub-nodes representing most of the six basic node types.

• Control: describes the mechanism that is used to control the capability of a node and
can be viewed as the node interface.

• Security: specifies what (if any) security aspects relate to a node.

• Integration: indicates how nodes integrate into the netforce.

• Interaction: specifies how nodes interact with other nodes.

Nodes integrate and interface with the netforce through three layers (Figure 2–3). The
network communications layer enables a node to connect to the network using security
mechanisms if required. The interface layer translates between external and internal node
commands and is compatible with a number of approaches to defining generic interfaces
for specific objects, e.g. the Object Management Group (OMG). The specification layer
takes a QoS approach to specifying node identity and services provided to the netforce.
These three layers provide nodes with a standardised interface that has a layered
structure. Such an encapsulation mechanism allows legacy systems to be incorporated into
the netforce by enabling them to exhibit netforce-compliant behaviour while hiding their
internal functions behind the interface.

Simple node interactions can be associated with processes that should occur in net centric
environments. For example, interaction between an information provider and a decider is
associated with creating situation awareness and interaction between multiple deciders
supports synchronised decision making. NFRM functions and services emerge from
interactions between the basic node types. For example, Collector Management is a generic
NFRM function that employs and controls a number of collectors to optimise activities
such as picture compilation, threat evaluation and engagement. Collector Management
uses interactions between collectors, information providers, deciders and effectors.

DSTO-TR-2093

6

While the NFRM is a generic framework, Keus discusses how its netforce principles can be
applied to military operations by linking them to the Network Centric Operations and
Warfare Reference Model (NCOW-RM) and the Global Information Grid (GIG). These are
discussed in the next section.

Figure 2–3. The layered node structure. Source: [Keus 2005]

2.3 Network Centric Warfare

NCW applies the idea of net centricity to military operations. If a force is able to achieve an
information advantage this may translate to a competitive advantage. While the concept of
an information advantage is not new, it is networking that underlies the information
advantage that NCW may provide. NCW, as a distinct concept, first appeared in the
public domain in 1998 [Cebrowski & Garstka 1998] as a shift from warfighting based on
attrition to a faster and more effective warfighting style. The NCW concept was expanded
in the text Network Centric Warfare [Alberts et al. 1999], which provided the framework for
the following tenets of NCW to be developed [OSD 2001, p. 4–1]:

• A robustly networked force improves information sharing.

• Information sharing enhances the quality of information and shared situational
awareness.

• Shared situational awareness enables collaboration and self-synchronisation; and
enhances sustainability and speed of command.

• These, in turn, dramatically increase mission effectiveness.

DSTO-TR-2093

7

NCW involves networking across the physical, information and cognitive domains of
military operations [Alberts et al. 2001]. The physical domain involves the land, sea, air
and space environments and the platforms and communications networks that are
situated in these environments. The information domain contains information created by
sensing the ground truth in the physical domain and information manipulated by and
communicated among warfighters. The cognitive domain exists in the minds of the
participants and involves perception, understanding and decision making. The
networking of these three domains has the potential to provide secure and seamless
connectivity, greater collaboration among the elements of a military force, ubiquitous
information, improved situational awareness, synchronisation of operations, increased
operational tempo and power to the sharp edge, and improved survivability, lethality and
responsiveness.

Realisation of NCW requires technology improvements, the evolution of organisations and
doctrine, appropriate tactics, techniques and procedures, and the development of relevant
training. One requirement for NCW is an improved capability for operating in the
information domain. NCW aims to improve the quality of information and the degree to
which information can be shared, thus providing access to the net centric part of the
information domain. A concept for achieving this improved capability is the GIG [Alberts
& Hayes 2003]. The GIG can be viewed as a mesh of information sources and sinks,
through which information is able to be managed and provided on demand to
warfighters, decision makers and support personnel. The United States Department of
Defense (US DoD) has mandated that the GIG be its technical infrastructure for supporting
NCW [US JFC 2001]. The aim is for all relevant information systems, national security
systems, advanced weapons platforms, sensor systems and command and control centres
to eventually be linked through the GIG.

The development of the GIG is guided by the US DoD enterprise architecture approach,
which is represented by the Department of Defense Architecture Framework (DoDAF)
[DoDAF WG 2004] and the NCOW-RM [US DoD 2004]. Both DoDAF and the NCOW-RM
take a Service Oriented Architecture (SOA) approach to NCW and mandate the use of
XML and other web-based standards. While DoDAF and the NCOW-RM specify an
architectural approach, a number of concrete architectures (e.g. those described by Dekker
[2005]) can be derived from the one approach by selecting components and services to
meet the requirements of each specific architecture.

Compliance with DoDAF is required and it aims to achieve a consistent architectural
model that will enable information sharing and component reuse across the US DoD. The
NCOW-RM defines services and standards for the US approach to NCW, which includes
business and management operations along with warfighting. The NCOW-RM identifies
the following four features of net centric operations: reach, richness, agility and assurance.
The intention of this approach is to provide authorised users access to trusted information
regardless of time or location.

This section has provided an overview of NCW and its adoption by the US DoD. The next
section discusses the Australian approach to NCW.

DSTO-TR-2093

8

2.4 Australian Network Centric Warfare

The Australian approach to NCW was officially launched in 2003 by the then Minister for
Defence, Robert Hill, in an address to the ADF Network Centric Warfare Conference [Hill
2003]. Australian NCW has been defined as

…a means of organising the force by using modern information
technology to link sensors, decision makers and weapon systems to
help people work more effectively together to achieve the
commander’s intent. [DGCP 2006, p. 5]

Since Minister Hill’s address, a number of documents have been produced that provide
high level guidance for the implementation of Australian NCW.

The document ADDP-D3.1 Enabling Future Warfighting: Network Centric Warfare [DFW
2004] introduces the endorsed Australian NCW Concept. This concept focuses on an
effects-based approach for which NCW should contribute at the operational, military-
strategic and national levels. The ADF acknowledges that while new concepts and
technology will change the character of conflict, the nature of war (e.g. fog, friction and
chaos) will endure. Australian NCW aims to increase operational tempo and improve
agility by using information to maximise operational effect and facilitating collaboration.

The NCW Concept is a balanced approach in which the human dimension is seen as
fundamental to NCW:

The network is only an enabler to warfighting effectiveness; it
supplements but cannot replace the skill, intuition and willpower of
the ADF’s people. The focus on training, doctrine, leadership and
organisation will balance the technical aspects that often dominate
discussion of NCW. [DFW 2004, p. 3–1]

The human (or organisational and sociological) dimension is concerned with training,
education, doctrine, organisation and leadership and requires trust to enable effective
collaboration. The network (or technological) dimension connects engagement, sensor and
command systems. A third component, networking, describes how the ADF’s human and
network dimensions will collaborate to build a system of systems [DGCP 2007].

Therefore, the Australian focus is on the adaptation of military structure, tactics and
concept of operations to net centric environments so that greater improvement can be
achieved (for a discussion of this applied to the Australian Army see [Krause 2005]). In
other words, a key feature of Australian NCW is ‘how the user uses the network’ [Fewell
& Hazen 2003, p. 33].

Five premises have been developed to explain how the human dimension, the network
dimension and networking will produce a warfighting advantage. These premises are
depicted in Figure 2–4.

DSTO-TR-2093

9

Figure 2–4. The five premises of the NCW Concept. Source [DGCP 2006, p. 10]

The following elements have been proposed in order to achieve self-synchronisation
(premise 5) and deliver the desired operational effects:

• A sensor grid, which consists of sensors and intelligence sources.

• A C2 grid and an engagement grid will use information from the sensor grid to
achieve more effective command, control and targeting.

• An information grid, which is a network that better connects elements of Defence and
protects its information.

Each of these grids consists of a human dimension and a network dimension along with a
networking component. Figure 2–5 illustrates how these grids will interact. In practice
they may not be separate and some systems will consist of a combination of grids.

DSTO-TR-2093

10

Figure 2–5. Interaction between the key elements of Australian NCW. Source [DGCP 2007, p. 6]

The NCW Concept is the foundation for the NCW Roadmap [Director General Capability
and Plans 2007], which provides a plan for the implementation of Australian NCW. A
‘learn by doing’ approach is taken in the NCW Roadmap with the aim of achieving a
seamless force in 2020. This is illustrated in Figure 2–6.

Defence has established the Network Centric Warfare Program Office (NCWPO) to
monitor and provide support to the development of capabilities for Australian NCW. The
NCWPO will achieve this through testing compliance of each capability against constructs
such as the Defence Architecture Framework (DAF) and the Approved Technology
Standards List (ATSL). These constructs are discussed in Section 4.

While this section has discussed the motivation for and concept of Australian NCW, it is
not yet clear how this will be achieved. For example, a challenge is achieving
interoperability with our allies. While the aim for the US GIG is to provide a ubiquitous
network that enables global connectivity for thousands of nodes, the Australian NCW
network will probably have constrained bandwidth and significantly fewer nodes than the
US network (a factor of ten or more has been suggested [McKenna et al. 2006])1. However,
key Australian nodes will need to interoperate with US nodes (and those of other allies).
Therefore, Defence requires advice regarding the extent to which it needs to consider and
implement concepts and technologies that have been adopted by other countries and
organisations.

1 For a discussion of the implications of the GIG to Australian NCW see [Chase et al. 2006].

DSTO-TR-2093

11

Figure 2–6. The approach taken to develop a seamless force by 2020. Source: [DGCP 2007, p. 20]

In alignment with Defence’s approach to implementing NCW by ‘learning by doing’, one
of the aims of articulating the NCW Concept was to provide guidance for Defence’s
research and experimentation activities [DFW 2004]. Some of these activities are discussed
in the next section.

2.5 Science and Technology for Australian Network Centric Warfare

The Defence Science & Technology Organisation (DSTO) is the primary provider of
science and technology (S&T) advice to Defence. The DSTO NCW S&T Initiative (NSI) was
established in 2004 to coordinate NCW activities across DSTO and foster collaboration for
NCW research. The DSTO NSI aims to provide a focal point for NCW research, improve
delivery of support to stakeholders, better inform S&T planning and identify areas for
further research.

DSTO has produced a significant body of work for Australian NCW. This includes areas
such as architectures [Dekker 2005], metrics [Hue 2007], standards [Vencel 2006],
compliance processes [Knight et al. 2006], modelling and characteristics [Fewell & Hazen
2003], force transformation studies [Chim et al. 2007], an Australian Regional Information
Grid (RIG) [Chase et al. 2006] and force design [DSTO NCW Tiger Team 2 2005]. However,
experimentation has been limited. According to Moon, experimentation is

…of significance and importance not only to the progression of our
understanding of the behaviour of complex networks, but also to the
application of net-centric approaches to military operations. [Moon
2006, p. 11]

DSTO-TR-2093

12

Two recent programs complement the DSTO NSI. The DSTO Experimentation Initiative
aims to develop a coordinated approach to experimentation across Defence, and the
Defence Rapid Prototyping, Development and Evaluation (RPDE) program works with
stakeholders to identify issues and solutions for high priority NCW problems. However,
the missing element is a research network of connected battlelabs across DSTO.

DSTO’s Net Warrior Initiative was established in late 2005 to connect and conduct net
centric experiments with real systems, testbeds and simulators across DSTO and,
eventually, wider Defence. Net Warrior will enable the principle of ‘learn by doing’ to be
applied to operational, systems and technical elements of NCW.

2.6 Summary

This section reviewed the origin and concept of net centricity and outlined how this has
been applied to develop the NCW approach for the US DoD. The Australian NCW
Concept was then discussed along with an overview of the beginnings of its
implementation and associated science and technology research and experimentation.

It was argued that DSTO requires a research network of battlelabs in order to support the
ADF’s move towards a networked force. The Net Warrior Initiative aims to address this
requirement and is discussed in the next section along with one of its nodes, which
represents the Airborne Early Warning & Control (AEW&C) capability.

DSTO-TR-2093

13

3. Net Warrior and the AEW&C Node

3.1 Net Warrior

The Net Warrior initiative in DSTO was conceived to address, through experimentation,
new and evolving net centric capabilities and mission system technologies to enhance ADF
joint warfighting capabilities. With this as the prime objective, Net Warrior is part of the
realisation of a general ambition in DSTO to create a research network of battlelabs. Net
Warrior is also a multi-divisional response that supports the DSTO Network Centric
Warfare Strategic Initiative (NSI), as discussed in Section 2.5.

The overall purpose of Net Warrior is to contribute to the mitigation of risk to acquisition
and implementation of Network Centric Warfare (NCW) and the exploitation of
opportunities that NCW presents. Net Warrior will fulfil its purpose if it influences NCW
related decisions on defence capabilities and the implementation of NCW in defence.

As a first step, the Net Warrior initiative aims to develop a research capability in NCW by
connecting a participating set of nodes that are testbeds representing ADF assets or
potential assets in the three domains of air, land and sea. Participating nodes satisfy at
least one of the criteria of a) the need for interoperability of the real assets, b) the
significance of the real assets in joint operations, c) whether high fidelity representations of
the assets exist or are planned in DSTO, and d) whether experimental representations of
potential assets would benefit from participating. Seven divisions and Boeing Australia are
collaborating in Net Warrior at present. The DSTO divisions which own participating
nodes are Air Operations Division (AOD), Maritime Operations Division (MOD),
Intelligence Surveillance & Reconnaissance Division (ISRD), Land Operations Division
(LOD), Electronic Warfare & Radar Division (EWRD), Weapon Systems Division (WSD),
and Command Control Communications & Intelligence Division (C3ID). Other
participants from the ADF, industry and academia are likely to join.

Boeing Australia’s involvement in Net Warrior is through an Interactive Project
Agreement (IPA) under the DSTO/Boeing Australia Strategic Alliance. The IPA, titled
Mission Systems in Network Centric Warfare Environments, spans the three years until the end
of 2009 and defines a collaborative NCW work program. Boeing Australia’s interest in Net
Warrior is focussed on the analysis of air/ground cooperation and air space management
using linked battle management and tactical air operations systems. Linked data systems
provide significant opportunity for shared situational awareness; however the operational
effects of this type of capability will be seen in the orchestration of air and ground
operations, air defence coordination, and air space management.

A characteristic of DSTO nodes participating in Net Warrior at present is that all are high
fidelity representations of existing or proposed airborne, land and maritime assets or
operational entities. A tenet of the Net Warrior philosophy is that if NCW is to be
successfully implemented, NCW concepts and technologies need to be evaluated in
environments that closely represent real systems. The nodes exist, in some form, but at
present they are not able to interoperate. High fidelity testbeds allow evaluation of real

DSTO-TR-2093

14

systems and investigation of technical issues. The testbeds will evolve in themselves as
integral components of the Net Warrior network and as stand alone components for
research capabilities with platform centric research objectives. Where there is common
interest, exercises will be run that involve all nodes or a subset. Physical infrastructure is
now being rolled out in DSTO that has been specified to satisfy Net Warrior objectives.

A node at Boeing Australia in Brisbane will represent a component from the land domain.
The Boeing Australia node will supplement the participating land nodes in LOD. As a
result of discussions with Boeing US, a possible future addition is a node at the Boeing US
AISR ECC (Aerospace Intelligence Surveillance and Reconnaissance Enterprise Capability
Centre) in Seattle, US.

In the Net Warrior context, there are two significant and feasible means of connecting to
sites external to DSTO. They are the TDL WAN (Tactical Data Link Wide Area Network),
which is now available at DSTO Edinburgh and the CFBLNet (Coalition Federated Battle
Lab Network). The two links will provide connectivity between the Net Warrior network
and external assets, such as real platforms and battlelabs in other coalition member
countries and industry partner facilities.

Through Net Warrior, technological and systems issues can be investigated that are
multidisciplinary in nature, such as platform connectivity, mission system integration,
multi sensor integration and human system integration. The networked environment will
allow emergent properties to be measured and new functions, which may be possible in a
networked environment, to be evaluated. Operator in the loop experimentation is
envisaged as well as other forms of technical evaluation. The emphasis will be on net
centricity and new mission system technologies although it could be regarded as another
environment for operations research. Regular coordination meetings aim to identify
opportunities for experimentation involving two or more nodes.

3.2 AEW&C Node in Net Warrior

3.2.1 Wedgetail AEW&C

Project AIR 5077, also known as Project Wedgetail, is the acquisition project for Australia’s
new Airborne Early Warning & Control (AEW&C) capability. The AEW&C capability will
provide the ADF with an enhanced surveillance and control capability in the broad
expanse of the Australian north. The acquisition contract was signed with The Boeing
Company in 2000 with first delivery expected in 2008.

The Wedgetail system consists of the Airborne Mission Segment (AMS), depicted in Figure
3–1, and the Ground Support Segments required for mission support, training and
maintenance. Each AMS consists of seven subsystems, as shown in Figure 3–2, which
provide the functions of surveillance radar and Identify Friend Foe (IFF), communications,
navigation, Electronic Support Measures (ESM), Electronic Warfare Self Protection
(EWSP), mission processing, and the Boeing 737 aircraft.

DSTO-TR-2093

15

Figure 3–1. The Wedgetail airborne mission segment.

EWSP

Navigation
Mission

Computing

Aircraft

Comms

Radar/IFFESM

Figure 3–2. Airborne mission segment subsystems.

The Mission Computing Subsystem (MCS) is the critical subsystem at the heart of the
Wedgetail mission system. The MCS provides the mission processing for sensor fusion,
sensor management, battle management, communications management and system
control. The MCS also includes 10 mission consoles and the Flight Deck Tactical Display
with associated display processing.

System enhancements using wideband technology will be a vital contributor to allow
Wedgetail to be a participant in future NCW but will greatly increase the amount of
information that must be processed by the MCS. Software programmable radio technology
(such as that provided through the Joint Tactical Radio System (JTRS) program) opens the
possibility of innovative approaches to communication requiring extensive software
support. New sensors and sensor processing algorithms (for example Ground Moving

DSTO-TR-2093

16

Target Indicator (GMTI), Synthetic Aperture Radar (SAR), Inverse Synthetic Aperture
Radar (ISAR), Surveillance InfraRed Search and Track (SIRST) and Electo Optics (EO)) will
bring new demands on processing. Ongoing improvements to tracking and sensor fusion
algorithms (such as Multi-Hypothesis Tracking) and the Human-Machine Interface will
further stretch computing resources.

To support these enhanced platform capabilities the MCS will undergo updates
throughout the Life of Type of the platform. Traditionally mission systems have been
upgraded in major increments, such as mid-life updates. The upgrade philosophy for
Wedgetail is ongoing minor increments in capability (Pre-Planned Product Improvement)
to allow capability enhancements more in line with operational requirements. This
approach of growth in place of wholesale replacement has guided the specification and
design for the MCS. Growth options for the Wedgetail capability are further discussed in
[Lawrie et al. 2005].

3.2.2 AEW&C Mission System Testbed Motivation

As part of the AEW&C integration into the Australian Defence Force, DSTO provides
advice in support of the Wedgetail system acquisition, activities leading up to full in-
service capability and through life. A number of research areas are relevant to these stages
of the AEW&C program, including mission system integration, multi sensor integration,
human system integration and platform connectivity and interoperability.

The AEW&C Mission System Testbed (MST) has been developed to support evaluation of
the Wedgetail MCS while providing the freedom to develop custom software for NCW
experimentation. The AEW&C MST is located within the AOD Mission System Research
Centre (MSRC). The MSRC hosts a range of mission system testbeds representing
helicopter, fast jet and surveillance aircraft. The focus of the MSRC is on mission system
integration, platform connectivity and operator system integration. The MSRC provides an
experimentation environment that combines simulation with real system hardware and
operator-in-the-loop.

The direction for development of the AEW&C MST and associated research is consistent
with a number of drivers. The high level DSTO guidance is to pursue cross divisional
coordination and to establish connectivity between DSTO testbeds. Under this vision the
testbeds become nodes in a network. Interconnection of DSTO testbeds will provide
improved infrastructure to conduct research into cross platform connectivity and NCW
operations.

The nature of future defence operations will be based on networking assets and sharing
information. Information exchange will be based on more flexible ad-hoc networks. Future
tactical networks are likely to make extensive use of the Internet Protocol (IP). In the
interim, information exchange using legacy tactical datalinks and tactical datalink message
sets will increase.

DSTO-TR-2093

17

The ADF’s NCW Roadmap [DGCP 2007] provides goals for the ADF’s NCW capability out
to 2020. It identifies capability improvements to the command and control, information,
sensor, and engagement grids to enable a more effective networked force.

Alberts et al. [1999] identify three forms of experimentation to support the coevolution of
NCW: Discovery Experiments; Hypothesis Testing; and Confirming Experiments. Each is
essential to the development of capability and methodology supporting NCW, and as
shown in Section 2 is lacking from an Australian perspective. Section 2 highlights a vast
amount of the work carried out at DSTO in researching concepts, operations and
technologies applicable to an NCW environment, however little has been achieved in the
way of validating this research. The use of a high fidelity testbed such as the AEW&C MST
provides a means for carrying out these three phases of experimentation, as opposed to
solely relying on modelling and simulation. Modelling and simulation does however play
a role in experimentation by stimulating the AEW&C MST with data to immerse it within
a realistic and flexible environment.

3.2.3 AEW&C Mission System Testbed Objectives

The Future Warfighting Concept [PGAD 2002] discusses the importance of concept
development and experimentation in providing better advice to decision makers. Concept
development and experimentation is essential as it reduces risk and enables military
innovators to prove and improve their ideas without outlaying significant resources.
Concept development gives broad and sometimes ill-defined ideas a chance to be
examined by groups of experts in a logical process. However, the results of
experimentation must be integrated into the capability development process. Enabling
Future Warfighting: Network Centric Warfare [DFW 2004] builds on this and discusses the
concept of ‘learning by doing’. The AEW&C MST is being developed and used to explore
NCW concepts through a ‘learning by doing approach’ where expertise in the concepts,
technology, and understanding of emergent properties is gained through experimenting
with operational software. In line with this, future research direction will be derived from
the outcomes of the initial research.

In broad terms, the AEW&C MST and its supporting research program is under
development to support performance evaluation of the Wedgetail MCS and to provide a
testbed for exploring the integration of NCW enabling technology into Wedgetail and
other platforms.

To assist DSTO in developing research capabilities in these areas, it has been proposed that
an AEW&C mission system be acquired to provide a Wedgetail Integration Research
Environment (WIRE). This will provide a functionally equivalent subset of the Wedgetail
mission system and will be a complementary capability to the AEW&C MST. The WIRE
will be used to explore integration issues using functionally equivalent hardware and the
actual Operational Flight Programs (OFPs) from the Wedgetail mission system. Of
particular importance will be the ability to facilitate operator in the loop experimentation
to address Decision Support System (DSS) technology suitability and operator / system
interaction optimisation.

DSTO-TR-2093

18

It is proposed to link the AEW&C MST and the WIRE with other laboratory environments
under the Net Warrior activity. Initial planned demonstrations include ‘ping’ connectivity,
followed by shared Common Operating Picture (COP) using J-series messages and
Distributed Interactive Simulation (DIS) to share a scenario. Longer term, regional grid
concepts [Chase et al. 2006] will be investigated.

AOD research areas which are relevant to AEW&C include: mission system integration;
multi sensor integration; human system integration; platform connectivity and
interoperability; and architectures and architectural styles appropriate to net centric
environments.

Mission system integration research addresses issues associated with the integration of
additional systems, with maintenance of mission computing performance baselines and
with ensuring that the system is architecturally suited to long term evolution given a
rapidly changing technical and operational environment.

Multi Sensor Integration (MSI) research addresses technical issues associated with
integration of data from multiple sensors and data sources such as onboard sensors (radar,
IFF and ESM), from offboard data sources (data links), from operators and from prior
information. MSI functions are tracking, identification, situation assessment, threat
assessment, and sensor Management. MSI is implemented with a variety of algorithms to
reason in the presence of large amounts of disparate, uncertain data. Consequently,
algorithm development is central to MSI research.

Platform connectivity and interoperability research in AOD is addressing issues associated
with integration of Tactical Information Exchanges (TIEs) with airborne mission systems.
It aims to provide the knowledge to ensure minimal impact of addition of proposed new
systems on mission system architectures. System latencies, capacities and quality of service
are issues that are inherent to different network and system configurations. Connectivity
research aims to address these issues for selected network and system configurations. In
particular, it is addressing the performance of gateways which have the potential to
minimise integration impact and to solve TIE interoperability and TDL beyond line of
sight issues. The potential of future technologies such as Cooperative Engagement
Capability (CEC), JTRS, Tactical Targeting Network Technology (TTNT), Weapon Data
Link (WDL), Integrated Broadcast Service (IBS), Common Link Integration Processing
(CLIP) and Multi-Channel Data Link (MCDL) and their impact on mission systems need to
be assessed.

Specific research objectives for the AEW&C MST include:

• Evaluation of net centric connectivity of a Wedgetail platform to:

o another Wedgetail (e.g. mission cooperation/handover)

o Air Defence Ground Environment (ADGE)

o Air Warfare Destroyers (AWD)

DSTO-TR-2093

19

o Jindalee Operational Radar Network (JORN)

o Joint Strike Fighters (JSF)

o Orion AP3Cs

o Unmanned Aerial Vehicles (UAV) and Unmanned Combat Aerial Vehicles
(UCAV)

o The Australian Advanced Air Traffic System (TAAATS)

o Australian customs/immigration.

• Demonstration of Australian Regional Information Grid (RIG) concepts and
architectures.

• Evaluation of emergent properties related to the AEW&C node in the Australian RIG,
for example:

o architectures

o services (e.g. messaging, collaboration, services management, security,
discovery and mediation)

o protocols (e.g. XML, SOAP, meta-data, trusted filters, GIG services, CODECs
and DDS (Data Distribution Service—pub-sub))

o scalability (how does the system scale with increased information flow?)

o adaptability/agility (ability to dynamically adapt to changing conditions)

o information assurance/security

o information sources and sinks (including analysis of meta-services and meta-
data)

o Quality of Service (QoS) – performance, availability, reliability and
modifiability2.

2 Performance is the ability of a system to allocate its computational resources to requests for service
in a manner that will satisfy timing requirements (i.e. latency requirements). Impacts are such
things as periodic or aperiodic messaging, synchronous or asynchronous protocols, resource
contention and locking, network bandwidth and latency, and asking ‘big picture’ questions rather
than individual requests for data across a network. Availability is the long-term proportion of time
the system is working and delivering its services. (Reliability is the probability a system will not fail
over some specified interval of time.) Modifiability is the ability of a system to be changed after it is
implemented (or deployed).

DSTO-TR-2093

20

• Investigation of impact of net centric design and information flows on Wedgetail
system performance.

• Investigation of Wedgetail communication upgrade paths and related integration. For
example, General Inter-ORB Protocol (GIOP) or IP tunnelling over Link 16, IP
gateways over extant radios and JTRS.

The US DoD Net-Centric Checklist [DCIO 2004] provides further net centric attributes that
may be explored using the AEW&C MST. Experimentation using the AEW&C MST will
require an evaluation methodology and metrics appropriate to net centric systems, for
example [Hue 2007].

Future defence operations will be based on networking assets and sharing information.
Development to this end can be observed in many US programs, perhaps none better
demonstrating this fact than the army’s Future Combat System (FCS) [US Army 2004]. It
consists of a number of manned and unmanned systems, a System of Systems (SoS),
connected via a common network to enable improved capability. Data is to be passed
through this network in a five layered model, and will make use of standards to conform
to the Service Oriented Architecture (SOA) approach of the GIG. Like other defence
environments, it will incorporate both existing and future platforms, and thus a number of
heterogeneous communication mechanisms such as legacy TDLs will remain initially. The
possible techniques for transitioning between these two stages of information sharing thus
become crucial, allowing for effective operations to continue with minimal interference.

One transitioning technique has been investigated by the Weapon Systems Open
Architecture (WSOA) program [Corman & Gossett 2001] funded jointly by the Air Force
Research Laboratory (AFRL), Defense Advanced Research Project Agency (DARPA), and
the Open Systems Joint Task Force and will be incorporated into the AEW&C MST. WSOA
has introduced the concept of using a TDL as a ‘virtual backplane’, with a CORBA
middleware layer tunnelling mechanism formed on top to achieve greater synergy with a
layered communication model (the advantages gained through the use of a middleware
layer in this situation are discussed in Section 4). The Common Object Request Broker
Architecture (CORBA) Common Data Representation (CDR) provides a machine
independent way of representing data, with stubs and skeletons handling requests
between objects to simplify application development. Forming a CORBA layer over a TDL
is made possible through tunnelling the CORBA pluggable protocols framework. This
framework permits the transparent use of custom Object Request Broker (ORB) messaging
and transport protocols by CORBA applications. This is particularly important where hard
latency and jitter constraints exist, rendering the standard GIOP and Internet Inter-ORB
Protocol (IIOP) protocols within an IP communication environment inappropriate.

Permitting information sharing across heterogeneous communication mechanisms is one
necessary capability for NCW, however a number of characteristics are required or are
desirable for its successful implementation. Adaptability and extendibility are two such
characteristics and their support may be investigated through a EUROCONTROL concept,
the connector [Ehrmanntraut 2003]. Much like the Defence Information Environment
(DIE), the air-ground technologies co-existing in the EUROCONTROL’s Air Traffic

DSTO-TR-2093

21

Management system are vast and require integration. The connector, an entity that
represents the interaction between components in a component-based software
architecture (CBSA), encapsulates middleware functionality and separates a component
from implementation dependencies. This abstraction hides the complexities introduced
through interactions with legacy systems such as TDLs, and thus improves the
upgradeability of the system. The connector also permits dynamic component
management and linking to improve the adaptability of the system in ever changing
network and mission configurations.

The encapsulation of middleware functionality lends itself to the investigation of a
multitude of technologies and will therefore prove useful in the Net Warrior Initiative.

3.3 Summary

The transformation to an Australian net centric force will require a shift in the way
systems are procured, built and used so that information can flow through a changing
network of heterogeneous nodes, each with its own information requirements. For
example, aircraft, due to their mobility, will have changing contexts and will require
dynamic connections to other nodes. This necessitates that research is conducted into how
information flows can be agile and adaptable in dynamic and distributed environments.
These environments will be underpinned by a range of standards and technologies (such
as component-based architectures and middleware), which are discussed in the next
section.

DSTO-TR-2093

22

4. Component-based Architectures and Middleware

4.1 Overview

In net centric environments, information interoperability is paramount and the ability to
seamlessly share information between and within systems in a timely manner is essential.
In order to satisfy these requirements new software design techniques and architectures
need to be adopted. Capability procurement had typically concentrated on platforms and
usually resulted in stovepiped systems that satisfied a capability gap. In net centric
environments capabilities need to be acquired with the ability to interoperate with other
systems.

This section aims to describe these new approaches, methodologies and architectures to
enable the design of interoperable component-based systems. Section 4.2 describes
software engineering approaches relevant to producing distributed interoperable systems,
and in particular, component-based software engineering (CBSE) methodologies. It also
highlights Australia’s Defence Architecture Framework (DAF) as a guide for system
designers and a tool for Defence capability managers. Section 4.3 introduces the concepts
of architectural approaches and the need for reference models. It describes how Service
Oriented Architectures (SOAs) are relevant to net centric systems and outlines the
importance of reference models to ensure conformance with a particular architectural
approach. Section 4.4 examines the relationship between patterns, middleware and
frameworks and how they can be combined to produce architectural environments that
support component-based designs and SOAs.

4.2 Engineering Approaches and Methodologies

4.2.1 Evolution of Engineering Approaches

Engineering approaches and methodologies applied to large software systems have
evolved over time. Figure 4–1 depicts the timeline of the types of systems developed as
software engineering design methodologies have evolved and new approaches have been
adopted.

Figure 4–1. Evolution of software architecutres. Adapted from [Cureton 2007 slide 3]

DSTO-TR-2093

23

Today large and complex software systems reside on platforms with multiple processors
and networks and can span the globe using distributed computing techniques. Many of
these systems have been developed in isolation, with little thought of interaction with
systems outside of the initial design. Such systems are commonly referred to as stovepiped
systems and many Defence platforms fit this description. The concept of Network Centric
Warfare (NCW) requires improved interoperability between software systems and this can
be satisfied by adopting a System-of-Systems Engineering (SoSE) approach.

SoSE is an emerging field of systems engineering with the following goals defined by the
System of Systems Engineering Center of Excellence [SoSECE 2007]:

• Individual systems can operate as autonomous components with one or more System-
of-Systems (SoS) while satisfying the functional requirements of each system.

• The SoS can explicitly accommodate a wide range of ambiguous and changing
conditions.

• The composition of a particular SoS can be reconfigured to form new SoS
implementations as conditions demand.

This section explores the DAF, which can be used to document systems and visualise the
interrelations of Defence capabilities as a SoS. CBSE is then discussed as it enables systems
to be produced that conform with the SoSE approach. CBSE was adopted in the
development of the AEW&C node in Net Warrior.

4.2.2 Defence Architecture Framework

The Australian Defence Organisation (ADO) has recognised the need to standardise how
Defence describes, models and designs Defence information capabilities within the
Defence Information Environment (DIE). The DIE (Figure 4–2) is described as:

…the aggregate of individuals, their expertise, organisation and
systems in the Australian Defence Organisation (ADO) that create,
collect, process or disseminate information, including the information
itself. [CIOG 2006, Introduction p. 4]

Architecture in relation to the DIE is a disciplined approach to planning, design and
implementation of information capability. The Chief Information Officer Group (CIOG)
defines this approach to be the DAF and have presented the DAF model, see Figure 4–3.
The application of the DAF allows for planners and decision makers to visualise and
optimise the DIE as a system of systems. This ensures that through the DIE, the right
information is delivered to the right people at the right time to support decision making at
all levels.

The DAF has evolved through the combination of elements of the US Department of
Defense Architecture Framework (DoDAF) [DoDAF WG 2004] and Metagroup’s (now
Gartner) Enterprise Architecture Strategy. While not strictly a SOA approach like DoDAF,

DSTO-TR-2093

24

Figure 4–2. Defence Information Environment. Source: [CIOG 2006, Chapter 1 p. 4]

Research and Technology Influences

O
pe

ra
tio

na
l a

nd
 B

us
in

es
s

C
on

te
xt

Defence Architecture Framework (v9.0)

C
om

m
on

 V
ie

w

Enterprise Architecture
Library

Governance, Compliance and Co-ordination
Fu

nd
am

en
ta

l I
np

ut
s

to
 C

ap
ab

ilit
ySpecific Architecture

Descriptions

Systems View

Technical View

D
at

a
Vi

ew

Operational View

Defence Enterprise Architecture Library

Defence Architecture Information Model

ToolsRepository

Enterprise Architecture

Business

Information

SystemsS
ta

nd
ar

ds

Infrastructure

Se
cu

rit
y

Defines

Influences

Determines

Represented
by

Supported
by

Populated by

Figure 4–3. Defence Architecture Framework. Source: [CIOG 2006, Chapter 2 p. 1]

DSTO-TR-2093

25

the DAF is continually evolving and appears to be more closely aligning with DoDAF.
Other information interoperability frameworks in the defence domain include the Ministry
of Defence Architecture Framework (MoDAF), the NATO Architecture Framework (NAF)
and the Network Centric Operations Industry Consortium (NCOIC) Interoperability
Framework (NIF).

Scope for the application of the DAF is broader than technical architecture design as it is
applicable from system design through to operations and Defence enterprise business
modelling. Thus, the minimum set of outputs defined as essential are those views that are
required to define a capability at a high-level to facilitate planning and an understanding
of a capabilities place within the DIE.

Experimentation under the Net Warrior Initiative involves the exploration of NCW
technologies and techniques, using component-based middleware and frameworks, which
is firmly grounded in the Defence Information Infrastructure (DII) component of the DIE.

It is intended that processes and tools from the DAF be used to document the Net Warrior
architecture and experiments. As most of the information required to describe the nodes
and their interrelations exists in documents produced under Net Warrior, this information
could be formally documented using the DAF products to improve common
understanding of the architecture in place. The DAF could then be applied to Net Warrior
experimental design, with DAF products used to describe the experiments, participants,
information and technologies required to generate the required outcome.

4.2.3 Component-based Software Engineering

4.2.3.1 Components
Component-based software engineering is a software design methodology based on the
notion of third party composition of software products (components), to produce
applications and systems with goals of certifiable, predictable behaviour and quality
attributes, with reduced time to market. Benefits of component-based software
engineering include:

• software reuse

• possibility of compartmentalised upgrades and maintenance

• allows parallel development

• can improve scalability through the ease of use of replication

• extensibility of a system

• enforced use of standards

• marketplace of components to be assembled.

DSTO-TR-2093

26

Components are self-contained and deployable software elements that form applications
when assembled with other components. Bachmann et al. [2000] propose that components
should exhibit the following properties:

• be an opaque implementation of functionality

• be subject to third party composition

• conform to a component model.

The first point implies that components are interchangeable. Any component
implementation that satisfies the required behaviour and interface can be substituted for
any other. A component can therefore be treated as a ‘black box’ and users of the
component need not rely on the knowledge of the exact implementation details.

The second point represents the need for components to be assembled and deployed into a
larger system by any system integrator according to a composition standard. Any system
can be comprised of components from a range of sources.

The third point is used to define a component-based architectural design. A conformant
component is subject to interface descriptions and architectural constraints imposed by the
model. These features enable components to easily interact with other components that
conform to the same component model.

4.2.3.2 Component-based Design Pattern
The composition of components to form applications is based on a component-based
design pattern [Bachmann et al. 2000] realised through the use of well-defined interfaces,
conformance to a component model and supported by a component framework. The
component-based design pattern (Figure 4–4) comprises software components (1), which
are deployable and can be run on a physical or logical device. Components are required to
implement one or more interfaces (2) that facilitate conformance to the component model
(6). The contractual obligations imposed by the interfaces (3) ensure that independently
developed components are able to interact in predicable ways and be deployable in
standard build-time and run-time environments (4). Component-based systems comprise
specialised component types (5) that perform different roles in the system that are
described by interfaces. A component model (6) is the set of component types, their
interfaces, and a specification of the patterns of interaction allowed between the
components types. A component framework (7) enforces and supports the component
model and provides a range of run-time services (8) similar to how operating systems
support applications.

4.2.3.3 Component Models
D’Souza and Wills [1999] introduce the concept of a component kit, such that collections of
components are designed to work together using a unifying set of principles. This is
referred to as a component architecture type. Bachmann et al. [2000] and Heineman and
Councill [2001] further refine this idea to define and report on component models and
component frameworks.

DSTO-TR-2093

27

Figure 4–4. Component-based design pattern. Source: [Bachmann et al. 2000, p. 3]

Generally, a component model is the specification of well-defined standards, interfaces
and conventions that developers must adhere to when developing components.
Conformance with a component model is one property that distinguishes components
from other packages of software. Table 4–1 lists the core standards and services required of
any component model.

Table 4–1: Basic elements of a component model. Source: [Heineman & Councill 2001, p. 38]

Standards for Description
Interfaces Specification of component behaviour and properties; Definition

of Interface Description Languages (IDL).
Naming Global unique names for interfaces and components.
Meta-data Information about components, interfaces and their relationships;

API’s to services providing such information.
Interoperability Communication and data exchange among components from

different vendors, implemented in different languages.
Customisation Interfaces for customising components. User-friendly

customisation tools will use these interfaces.
Composition Interfaces and rules for combining components to create larger

structures and for substituting and adding components to
existing structures.

Evolution Support Rules and services for replacing components or interfaces by
newer versions.

Packaging and Deployment Packaging implementation and resources needed for installing
and configuring a component.

Interfaces

An interface describes a provided behaviour; a user of a component can only
rely on the specification of the interfaces that a component supports. The
interface acts as a contract between the component and its clients, it describes
constraints of a particular service, what the client can expect from the

DSTO-TR-2093

28

component and what the client needs to provide in turn. A component model
may also specify interfaces that a component must implement in order to
provide services that the component expects from the run-time environment
such as lifecycle management or security. The interfaces that a component
implements define the type of the component. If the component implements
multiple interfaces, its use can be considered polymorphic and can represent
itself as any one of these types.

Naming

Components need to be discoverable and uniquely identifiable. This can be
achieved through the use of unique identifiers, naming or directory services.
The risk of name clashes can be reduced through the use of hierarchical
namespaces.

Meta-Data

Meta-data is used in a component model to provide descriptions of
components and interfaces. The model should define how meta-data is
described and how to access the data. Examples of meta-data use include Java
Beans reflection and introspection and reflection in the Common Object
Request Broker Architecture (CORBA) Component Model (CCM) specification.

Interoperability

Interoperability standards define how components communicate with each
other and share data. These standards can ensure that components from
multiple vendors are able to interact in the same process space, the same
machine or over a network. A normalised data representation should be
specified to provide a machine independent view of data, which facilitates
sharing across a network. For example, the Object Management Group (OMG)
has specified the use of Common Data Representation (CDR) in CORBA
systems. Standards for Interface Description Languages (IDL) can be used to
allow component implementations to be programming language independent.
Examples of this include the CORBA IDL specification and Microsoft’s CLR
(Common Language Runtime) for .NET. Bridging specifications can be defined
to allow components designed for different component models to interoperate.
For example, the OMG specifies how CORBA components can interoperate
with Microsoft COM (Component Object Model) objects and Sun Enterprise
Java Beans.

Customisation

Customisation in the context of components is defined in [Heineman &
Councill 2001, p. 42] as ‘…the ability of a consumer to adapt a component prior
to its installation or use’. Customisation can be facilitated through the use of
specialised interfaces and can be performed using customisation and
deployment tools. Customisable aspects of components include properties and

DSTO-TR-2093

29

behaviour, generally implemented through the use of strategy patterns and
policies.

Composition

A fundamental property of component-based systems is the ability to assemble
applications from components, potentially sourced from a range of vendors. In
order to facilitate this functionality, connector standards are required to enable
component connectivity. The two main forms of component connection are
asynchronous and synchronous communication methods. Asynchronous
interactions are typically based on publish and subscribe mechanisms with
event propagation. This method produces loosely coupled systems where the
location of event sources and destinations may not be known to either end
point. Synchronous communications are based on client/server principles and
direct method calls on (potentially distributed) components. This method
produces tightly coupled systems that rely on the knowledge of the servant’s
interface.

Evolution Support

In general, large component-based systems do not remain static. Requirements,
interfaces and component implementations can change as new functionality is
added. Ideally existing clients of a component whose interface or
implementation is modified should be unaffected by the change. It is therefore
important that a component model defines rules and standards to enable
versioning of interfaces and components.

Packaging and Deployment

Since components are units of standalone deployment, a component model
needs to define how a component is packaged as part of the deployment
process. Component deployment consists of everything required to install and
configure the component within its component framework.

4.2.3.4 Frameworks
A component framework is complementary to the component model and implements
infrastructure and services that support or enforce a component model. The framework is
similar in concept to an operating system, and provides services and an environment in
which components can be deployed and utilised. The framework manages shared
resources used by components and facilitates the connections and communications
between components. Examples of component frameworks include Enterprise Java Bean
servers and containers, and CCM implementations such as the Component Integrated
ACE3 ORB (CIAO). Experimentation in distributed component systems using the Airborne
Early Warning & Control Mission System Testbed (AEW&C MST) has explored the use of
CIAO and Boeing Australia’s Software Architecture Framework (SAF), which is based on
open standards.

3 http://www.cs.wustl.edu/~schmidt/ACE.html.

DSTO-TR-2093

30

Component models and frameworks can be general in nature and provide a number of
horizontal4 standards and services. They can also be domain specific and provide a
number of vertical standards and services. Horizontal frameworks while more general and
applicable to a wider variety of applications normally require more effort from the
developer to implement components. Conversely, vertical frameworks simplify the
development of components in a particular domain, but are difficult to apply more widely.

In order for components to successfully interact, they need to conform to the same
component model or use bridging and adaptation mechanisms to allow interaction across
heterogeneous frameworks.

4.3 Architectural Approaches and Reference Models

4.3.1 Software Architecture

There are many definitions of software architecture and many variations on what software
architecture entails. The following is a succinct definition:

Software architecture is the fundamental organization of a system
embodied in its components, their relationships to each other and to
the environment and the principles guiding its design and evolution.
[Dikel et al. 2001, p. 20]

An architectural approach is more than a design and is broader than an architectural style
or specification. The approach guides the architect and developer to design systems
according to a high-level concept of organisation and interactions. One architectural
approach that is particularly suited to the design of net centric systems is the SOA
approach5. Reference models assist an architect to design a specific architecture that
conforms to an architectural approach.

4.3.2 Service Oriented Architectures

SOAs make software resources available and discoverable as services to end-user
applications and other services through public or published interfaces. The most basic goal
of SOAs is to implement business processes for enterprise systems. SOAs are able to be
applied across enterprise boundaries and are an enabler for the integration of
heterogeneous information technology systems.

Net centric operations and warfare require resources to be ubiquitously available within
Defence enterprises and across operational boundaries, within security limitations. SOA
concepts when applied to the needs of net centricity are able to achieve flexible and

4 Horizontal descriptions refer to the applicability of the subject to a wide variety of situations and
domains, while vertical descriptions refer to subjects that are very domain specific and not
applicable outside of the given context.
5 [Krishnamurthy 2006] provides a detailed comparison of several architectural approaches to
designing net centric software systems and their associated frameworks.

DSTO-TR-2093

31

adaptable operational effectiveness through the integration of disparate systems and
capabilities. For this report the following is adopted as the definition of a service:

A service is generally implemented as a course-grained, discoverable
software entity that exists as a single instance and interacts with
applications and other services through a loosely-coupled (often
asynchronous) message-based communication model. [Brown et al.
2002, p. 4]

SOAs and CBSE share similar concepts, but services are distinct from components due to
their course-grained and discoverable properties. Services generally implement more
functionality than components, deal with larger data sets and need to be discoverable at
design-time and run-time.

While definitions of SOAs vary, the following key characteristics can be identified [Lewis
& Wrage 2004; O’Brien et al. 2005; Brown et al. 2002; NCOIF 2005]:

• Standards-based interfaces: Services are required to implement at least one interface.
The interface acts as a formal contract between the service provider and the service
requestor. The use of interfaces standards allows for platform or implementation
technology-independent definitions of an interface to facilitate the use of services in
heterogeneous environments and is key to achieving the net-centric vision.

• Abstract underlying logic: Services hide their implementation, only the interface and
the interface description are made public. Service requestors only rely on the defined
behaviour of the interface. This has the advantages of allowing the use of any service
that supports the interface, as well as potentially shielding the client from any
modifications to the implementation of the service.

• Course-grained: Services usually implement more functionality and operate on larger
data sets than components. A service focuses on high level business processes using
standard interfaces. If a service is too fine grained, service requestors may need to
make more requests than necessary, resulting in inefficient use of resources.

• Loosely coupled: Services are generally connected to other services and applications
through standard message-based techniques that reduce dependencies.

• Discoverable: Service interfaces and their descriptions should be discoverable at
design-time and run-time and should be understandable to humans and service users.
Discovery can be aided through the use of a directory provider or through the use of
its network address if known.

• Modular and autonomous: A service represents a boundary around a discrete unit of
business logic, and within this boundary, should not be dependent on other services to
execute this logic.

• Reusable: Services are designed to support reuse, and use by multiple service
requestors.

DSTO-TR-2093

32

• Composable: Due to the reusable, modular and course-grained characteristics of
services and their implementation of well-defined interfaces, systems and higher-level
services can be built through the composition of services and evolved through the
addition of new services.

Typical business goals that may lead an organisation to implement a SOA include the
ability to be agile and adapt quickly to new opportunities or threats, to reduce costs
through streamlining business processes, and removing unnecessary duplication of
services. SOAs also introduce the opportunity to share capabilities offered by existing
legacy systems.

In order to transition to a SOA, an organisation needs to identify what pieces of
functionality or business processes could be represented as services. The granularity of the
service needs to be determined, and public or published interfaces need to be designed to
expose the functionality. Legacy systems can be incorporated into a SOA through an
adaptor. The adaptor is designed to make the legacy system appear as a service by
providing a public interface for service requestors to call, while dealing directly with the
existing system to access the functionality.

Applications based on a SOA are developed by combining services to realise an emergent
behaviour, which is potentially greater than the sum of the parts. Services can be sourced
exclusively within the organisation or from external organisations. Each service can also be
reused in different applications. This design methodology allows applications to be
evolved through the addition of new services.

SOAs require some form of inter-service infrastructure to facilitate interaction and
communication between services and applications. Currently, the most common
technology used to realise SOAs are Web Services, but this is not the only middleware
environment available. J2EE, .NET and CORBA are other commonly used technologies.
Importantly, these technologies specify standards for interfaces, communications and data
representation, and are all middleware and framework based.

4.3.3 Technical Reference Models

In net centric environments, a Technical Reference Model (TRM) can be described as
defining the software components, services and component interactions that may be
implemented in a system. To achieve an open systems environment, the layered structure
of a TRM aims to ensure separation of data from applications and applications from the
computing platform. While a TRM specifies an architectural approach (e.g. a SOA TRM), a
number of architectures (e.g. those described by [Dekker 2005]) can be derived from the
one TRM by selecting components and services to meet the specific requirements of each
architecture. The TRM is analogous to a checklist for conformance of a specific architecture
to the architectural approach.

Knight et al. [2006] have developed an NCW Enterprise Model that includes a TRM layer
and recommend the ADO endorse a TRM with which Defence projects should comply. As
one of the aims of Net Warrior is to integrate a set of disparate nodes in a net centric

DSTO-TR-2093

33

environment, achieving technical interoperability will require adherence to an
architectural approach and standards through a TRM. The Net Warrior TRM will provide
a mechanism for achieving a common understanding and identifying issues associated
with portability, scalability and interoperability.

According to [Vencel 2006], the US and NATO are moving away from their existing
platform centric TRMs and are in the process of adopting TRMs that define services and
standards for net centric environments. The UK is still developing its architectural
approach. The US Network Centric Operations and Warfare Reference Model (NCOW-
RM) [US DoD 2004] is more mature than the NATO model, but is still an emerging TRM.
Therefore, basing the development of the AEW&C MST (section 5) on, and linking the Net
Warrior TRM to, an established industry TRM may be appropriate at this stage.

Boeing in their involvement with the NCOIC has recommended the adoption of the
Strategic Architecture Reference Model (SARM) [Logan 2003] or similar model as its TRM.
The SARM is a SOA TRM and is consistent with high-level reference models such as the
NCOW RM and Open System Interconnection (OSI) model. The SARM is a
communication, information, application and presentation architecture framework (Figure
4–5).

Figure 4–5. Strategic Architecture Reference Model. Source: [Logan 2003, p. 23]

The focus of the SARM is the communication and information layers as these support
interoperability between nodes and the application and presentation layers are node
specific. The SARM can be decomposed further than Figure 4–5 into a hierarchical
collection of components and services based on open standards. Mechanisms for
accommodating legacy systems are specified and include adaptors, translators and
emulators. The SARM has been adopted in the development of the AEW&C MST and
proposed for use as the Net Warrior TRM.

DSTO-TR-2093

34

4.4 Reference Architectures, Patterns, Middleware and Frameworks

4.4.1 Reference Architectures

New approaches to designing distributed applications both for net centric and mission
system environments are using techniques based on components supported by layered
middleware environments that utilise the benefits of frameworks and patterns to produce
applications. Boeing’s Bold Stroke [Doerr & Sharp 1999; Paunicka et al. 2001] and the
Weapon Systems Open Architecture (WSOA) program [Corman & Gossett 2001] are
examples in the defense domain of experimentation with this technology in the United
States.

These approaches conform to CBSE principles by using a layered hardware and software
infrastructure that provides a standardised environment in which components can interact
with each other and the infrastructure. That is, they describe a component model and
provide a framework for conformance. In these environments components are ‘plugged
into’ the underlying infrastructure or fabric. The fabric provides a logical connection
between components within systems and across system boundaries. It therefore becomes a
trade-off of quality attributes and functionality to determine where a component resides
rather than tightly coupling the producer and consumer. The use of hierarchical contexts
or domains can be employed where logical separation of components or component
systems are required.

Figure 4–6 depicts a layered Reference Architecture that supports distributed component
systems. The base layer represents the platform environment of operating system and
services that run on top of hardware. The communications layer sits above the platform
environment and provides standard transport and protocol support. Above the
communications layer is the middleware environment that provides operating system
abstraction and distribution standards and services to support networked components and
systems. Specific domain environments at the top level provide a framework layer to host
applications. Components are developed and deployed on top of the domain environment
by extending the framework and may interact directly with the middleware environment.

Importantly, standards are relied on at every layer of the reference architecture to provide
consistent interfaces between layers and predicable behavior overall. The use of open and
established standards at all layers means that a developer mainly needs to design and
develop the business logic, while relying on lower layers to provide services for
networking, security, lifecycle management and operating system abstraction, among
others, while avoiding the need for the developer to write complex, and possibly error
prone, ‘non-business’ logic. Existing systems are not precluded from integration into this
layered model. Through the use of adaptors, legacy systems can be presented as a service
to other components. The adaptor normalises the legacy system’s interface to the fabric
and allows the components to effectively and seamlessly ‘plug-in’.

The rest of this section will discuss patterns, middleware and frameworks in the context of
the Reference Architecture and outline the relationships between these three concepts.

DSTO-TR-2093

35

Figure 4–6. Component system reference architecture.

4.4.2 Patterns

Software patterns are solutions to common problems encountered in architecting and
designing software. Patterns provide an effective means of communication between
software architects, designers and developers. By describing a design using patterns, a
common understanding can be imparted of the design problem, its context and an outline
of the solution through the description of the structure and dynamics of collaborating
classes [Gamma et al. 2005]. While not providing strict code reuse, patterns facilitate reuse
of the knowledge and experience of previous designs. Patterns themselves are abstract
descriptions of problem solutions that need to be implemented by a developer.

There are in general three categories of patterns: architectural patterns, design patterns
and idioms. The application of patterns in each category becomes more specialised the
further a software system design is delved into.

Architectural patterns [Buschmann et al. 1996] solve problems at a system-wide level by
describing how elements within a system are organised and structured, and specifying
predefined subsystems and their responsibilities. The correct choice of which architectural
pattern(s) to implement is essential as it impacts on system-wide attributes.

Design patterns [Gamma et al. 1995; Buschmann et al. 1996] are applicable for solving
design issues at a subsystem level. They describe the components and their relationships
to solve a general design problem. Design patterns are smaller in scale than architectural

DSTO-TR-2093

36

patterns but they are general enough to be paradigm or programming language
implementation independent.

Idioms [Buschmann et al. 1996] are low-level patterns targeted for a specific programming
language. They describe how to implement a component or relationship for a specific
language.

No single pattern is able to provide the solution for an entire system. Patterns need to be
combined to produce a desired outcome or design and some patterns work together better
than others. The relationships between patterns can be represented through a Pattern
Language [Schmidt et al. 2000]. A pattern language is not a formal language, but a guide to
how patterns collaborate. These languages are specific to a particular context. For example,
a language of concurrent and networked objects (Figure 4–7) has been used in the
development of the AEW&C MST.

Figure 4–7. Concurrent and networked objects pattern language. Source: [Schmidt et al. 2000,
inside rear cover]

4.4.3 Middleware

Middleware is the glue infrastructure that makes distributed component-based systems
and SOAs possible. It provides reusable software that functionally bridges two key gaps

DSTO-TR-2093

37

between (1) end-to-end application functional requirements and (2) the lower-level
operating systems, networking protocol stacks, databases and hardware devices [Schmidt
& Bushchmann 2003]. The middleware layer can be decomposed into multiple layers
(Figure 4–8) much like a network protocol stack, each providing distinct functionality.

Figure 4–8. Middleware layers

Host infrastructure middleware abstracts and enhances operating system (OS)
mechanisms to provide reusable interprocess communication, event demultiplexing,
concurrency and synchronisation. This layer provides an OS independent environment for
using low level OS application programming interfaces (APIs) by encapsulating the
peculiarities of an OS and presenting a normalised interface to the layers above.

Common examples of host infrastructure middleware include Sun’s Java Virtual Machine,
Microsoft’s CLR, and ACE. The AEW&C MST uses ACE to provide the host infrastructure
middleware in the experimentation environment.

Distribution middleware builds on host infrastructure middleware and defines
programming models for distributed computing. Distribution middleware enables clients
to invoke methods remotely on a target object in a location independent manner, without
depending on hard-coding communication protocols and interconnects, or dealing directly
with hardware.

Popular forms of distribution middleware include CORBA, Sun’s Java Remote Method
Invocation (RMI) and Microsoft’s .NET. Common to these technologies, and what enables
the distribution, is the reliance on request brokers. Request brokers enable objects to
interoperate, usually via proxies, across heterogeneous platforms and networks. Other
distribution middleware technologies that are gaining popularity are Web Services, which
rely on XML-based SOAP. The AEW&C MST relies on CORBA-based distribution
middleware provided by The ACE ORB (TAO)6.

6 http://www.cs.wustl.edu/~schmidt/TAO.html.

Operating Systems/Services
(Windows/Solaris/...)

Host Infrastructure Middleware
(ACE/CLR/JVM)

Distribution Middleware
(CORBA/RMI/Web Services)

Common Middleware Services
(Concurrency/Threading/Transactions/...)

Domain Specific Middleware Services
(Aero-Space/Medical/Financial)

Applications

DSTO-TR-2093

38

Common middleware services expand on the capabilities provided by distribution
middleware through the definition of domain-independent, reusable software services
that are available for application developers. These services negate the need for the
application developers to write ‘plumbing’ code via lower-level middleware that handles
distributed resources and allows them to concentrate on writing business logic. Some
examples of the types of services typically provided are transactional behavior, location
independence, security, fault tolerance, concurrency, scheduling, pooling and threading.

The difference between distribution middleware and common middleware services is that
distributed middleware is designed to manage and coordinate end-system resources
conforming to a distributed programming model. Common middleware services focus on
the allocation, scheduling and coordination of various resources throughout the
distributed system in a structured and consistent manner.

Domain-specific middleware services are specific to the requirements of a particular
domain, such as telecommunications, commerce, health and aerospace. The previous
middleware layers and services mentioned have been general in nature and are applicable
and reusable ‘horizontally’ in many domains. Domain-specific middleware services satisfy
‘vertical’ markets and product-line architectures. These services are designed to reduce the
development effort while increasing the quality of products in a limited field through
reuse. Bold Stroke [Doerr & Sharp 1999; Paunicka et al. 2001] and WSOA [Corman &
Gossett 2001] are examples where domain-specific middleware has been developed to
provide component architectures for military avionics mission systems. The AEW&C MST
uses Boeing Australia’s SAF, which provides domain specific services for real-time,
distributed and concurrent components in the mission system domain.

4.4.4 Frameworks

Development of middleware and complex component-based systems would be difficult
without the support of frameworks. They facilitate the reuse of design knowledge and
code by providing developers with a toolkit of patterns and components geared towards
simplifying and standardising programming practices in a particular domain.

Contrary to traditional software design processes where developers create an application
from scratch, often resulting in the reengineering of solutions to problems that have
already been solved, frameworks provide commonly recurring solutions for infrastructure
and services requirements. A framework can be considered to be an incomplete
application that can be extended and customised by application developers to create
complete applications. That is, a framework is a collection of classes, some complete, that
developers can instantiate, and others that are abstract with hook methods that are
implemented by developers. Developers have the responsibility of structuring and
defining the behaviour of the application, but can call upon the concrete realisations of
patterns provided by the framework to achieve application goals. Frameworks differ from
middleware in their completeness, role and usage. A framework is extended and
customised to produce a complete application, while middleware is a complete application
that a developer uses to fulfil the roles described in Section 4.4.3.

DSTO-TR-2093

39

The use of frameworks leads to an inversion of control of the software system. Normally
when a developer writes an application, they write the body of the code and call on
methods or routines from components and libraries. In this case execution is controlled by
the developer. However, frameworks provide facilities for event loop execution,
demultiplexing and connection of software components. The framework is the body of the
application and it invokes methods implemented by the developer to execute the business
logic, which results in the framework controlling the flow of execution.

4.5 Summary

Component-based architectures supported by middleware and built on top of frameworks
are able to satisfy design needs of applications to produce stable mission and net centric
systems. Basing an architectural design on a TRM and in particular the SARM, CBSE
concepts have been combined with a layered architectural style to introduce the
component-based reference architecture. This model aligns with a SOA approach and
particular emphasis is placed on the use of open and well-defined standards at all layers.
These systems rely heavily on interface definition and implementation, which facilitates
the assembly of applications and systems through the composition of components.

This section has explored aspects of these engineering and architectural approaches and
methodologies at a theoretical level and has briefly mentioned experimentation conducted
using these technologies and concepts. The next section describes the application through
experimentation of these concepts through the implementation of the AEW&C MST.

DSTO-TR-2093

40

5. AEW&C Mission System Testbed

5.1 AEW&C Mission System Testbed Architecture

5.1.1 Common Object Request Broker Architecture

The Airborne Early Warning & Control Mission System Testbed (AEW&C MST) is built on
a component-based distributed computing framework that incorporates many
architectural design patterns. This framework was developed by Boeing Australia and is
called the Software Architecture Framework (SAF). The SAF encapsulates the details of the
Common Object Request Broker Architecture (CORBA) middleware and transports, and
provides a series of services aiding in the production of a reliable and robust distributed
computing environment. The SAF is discussed further in section 5.1.2.

The CORBA specification supplies a set of abstractions and services to address the
problems associated with distributed heterogeneous computing, which include reliance on
programming languages, operating systems, communication protocols and hardware. The
CORBA reference architecture (Figure 5–1) provides interface sets linked by an Object
Request Broker (ORB) [Schmidt & Buschmann 2003].

Figure 5–1. CORBA features. Source: [CORBA 2006]

DSTO-TR-2093

41

The following description of the features of CORBA is based on [Henning & Vinoski 1999]
and [CORBA 2006]:

• Interface Definition Language (IDL): A programming language independent interface
that defines supported operations and the data passed to and from these operations.

• Object: An entity that is locatable by an ORB and capable of having client requests
invoked upon it.

• Client: A program that makes a request on an object through its defined interface.

• Servant: A programming language entity that implements one or more CORBA
objects.

• Stub: A proxy to the servant, generated from IDL, on the client-side. The client makes
requests using this stub, which marshals operations into General Inter-ORB Protocol
(GIOP) messages in the ORB core.

• ORBs: Enable communication between clients and objects through GIOP messages.
Communication takes place in two stages, with the client ORB transmitting requests to
a server-side ORB core, which then passes these requests to the object adapter
responsible for creating the target object.

• Object adapter: Takes requests dispatched by a server-side ORB core and dispatches
them to the skeleton for further delegation.

• Skeleton: A proxy to the servant, generated from IDL, on the server-side. It is
responsible for dispatching requests received through the object adapter to the servant
implementing the target object.

5.1.2 Software Architecture Framework

The SAF expresses a Service Oriented Architecture (SOA) approach, with common
software component mechanisms and interfaces encapsulated into a patterned framework.
The general aims of the SAF comply with those outlined in Section 4.4. In SOAs, resources
are made available independently through collaborating mechanisms. Requests are made
on resources through services, which manage the resources without consideration to
underlying platform dependent constraints. This is supported by the SAF through the
layered hardware and software infrastructure described in Section 4.4.

The SAF is built on ACE7, the ADAPTIVE8 Communication Environment. ACE is an open-
source object oriented (OO) framework, developed by the Distributed Object Computing
(DOC) Group, that implements many core patterns for concurrent communication
software. Like the SAF, the main application of ACE is the development of high

7 http://www.cs.wustl.edu/~schmidt/ACE.html.
8 A Dynamically Assembled Protocol Transformation, Integration, and eValuation Environment.

DSTO-TR-2093

42

performance, real-time and distributed communication services, with the aim of reducing
complexity through higher layer abstractions. Portability is guaranteed by the SAF
through ACE’s operating system adaptation layer (Figure 5–2), which isolates applications
from distinct operating system and network mechanisms by normalising specific
operating system differences to standard mechanisms and interfaces. An additional
abstraction layer, The ACE ORB (TAO), implements the CORBA middleware specification
while utilising the patterns and mechanisms of the lower ACE abstraction.

Figure 5–2. ADAPTIVE Communication Environment structure. Source: [ACE 2006]

CORBA is further supported by the SAF through ORB adapter components that ensure
compatibility with TAO9, Orbacus10 and ORBExpress11 implementations, making for a
pluggable ORB capability. The SAF is currently proven on both Solaris and Windows
platforms [Boeing Australia 2005]. The facilities and services provided by the SAF include:

• Core services: The SAF provides two core services, component bus and component
model. The component bus encapsulates the CORBA ORB, providing distributed
components with context, deployment and configuration services. The component
model provides developers with a common interface and interaction model for
distributable components.

9 http://www.cs.wustl.edu/~schmidt/TAO.html.
10 http://www.orbacus.com/.
11 http://www.ois.com/products/.

DSTO-TR-2093

43

• Streams: Provide a framework for transferring continuous flows of data constrained by
Quality of Service (QoS) requirements. The type of data transmitted is defined by IDL
and can employ various CORBA transfer mechanisms, including multicast UDP (User
Datagram Protocol) and TCP/IP (Transmission Control Protocol/Internet Protocol).

• Events: Support the passing of asynchronous messages between components through
event channels. System complexity is reduced by this concept due to the decoupling of
event producers from their consumers.

• Domain management: Allows multiple instances of a system to reside on the same
computing resources. Each instance can run isolated from the other installations while
still providing the capability for resources to be shared.

• Start-up and reliability: Addresses dependency issues between components at start-up,
and models the ability of a software component to handle requests at a given time. It
also assists with the reliability of components and the ability to handle failures of
individual server processes.

• Deployment control: Processes can be configured from multiple sources during
deployment and have that configuration managed at run-time. The SAF divides the
deployment configuration of processes into properties (attributes of the process and its
configuration) and services (the components that are executable within the process
space).

• Instrumentation and logging: Log and tracing mechanisms are provided through the
command line and configuration files.

A key service provided by the SAF is concurrency. The complexity introduced through
concurrency in an OO system is perhaps best summarised by Lea [1999] who defines an
OO system as consisting of both objects and activities. These two concepts are interrelated
as a ‘…given object may be involved in multiple activities, and conversely a given activity
may span multiple objects’ [Lea 1999, p. 38]. Interactions such as these lead to a system
with execution that is nondeterministic and thus cannot provide guaranteed correctness or
quality. Four key issues can be identified under these categories:

• correctness

o safety—nothing bad happens to an object

o liveliness—something eventually happens within an activity

• quality

o reusability—the utility of objects and classes across multiple contexts

o performance—the extent to which activities execute soon and quickly.

DSTO-TR-2093

44

A number of constructs exist to support concurrent processing and operation handling.
The SAF extensively employs the use of one such construct, known as threads, which
provide shared access to resources within a single process. Communication between
threads is more efficient than many other concurrency constructs as memory address
spaces are not swapped until a process is context switched. However, this introduces its
own complexity, requiring further synchronisation and notification patterns to ensure the
quality and correctness of code is maintained.

The SAF provides a number of patterns designed to address the four concurrency issues
highlighted in [Lea 1999] and thus assists in the development of reliable and robust
software. These patterns include latches, barriers, channels, rendezvous, executors,
synchronous variables, and a variety of locks, such as mutexes and semaphores. A detailed
explanation of these concurrency patterns can be found in [Lea 1999] and [Huston et al.
2003].

5.2 AEW&C Mission System Testbed Overview

All custom applications developed for the AEW&C MST take the form of software
components12, primarily based on the SAF component model. This reduces coupling and
permits communication via an ORB. At present these custom applications have been
developed with the use of CORBA, however any of the technologies described in Section 4
could be used. CORBA has been chosen as it overcomes, through abstraction and services,
the problems associated with heterogeneous computer networks [Henning & Vinoski
1999].

The components of the AEW&C MST can be grouped into four main categories (Figure 5–
3) and represent: Commercial Off-The-Shelf (COTS); the stimulation environment; mission
computing components; and monitoring components. The stimulation environment
generates traffic to alter the state of the AEW&C MST. Mission computing represents
adaptations of components from the AEW&C Mission Computing Subsystem (MCS),
while monitoring components provide interfaces for observing the information received
and stored by the other components of the AEW&C MST. The remainder of this section
provides a brief description of each component; more detailed descriptions are in
Appendix A.

12 Components are ‘…units of composition with contractually specified interfaces and explicit
context dependencies only’ [Szyperski 1998, p. 41].

DSTO-TR-2093

45

Figure 5–3. The AEW&C Mission System Testbed structure.

The stimulation environment components include the Test Track Generator, Pilot Model,
Air Vehicle Model, and the Stimulation Toolkit and Generation Environment (STAGE). All
of these components, except STAGE, are simple applications aimed at achieving a specific
experimental goal. For example, the Air Vehicle component is a simple model of an
aircraft, maintaining aircraft position with basic limits on speed, altitude, acceleration,
turn-rate and climb-rate. Such a simple model presents problems for experimentation, but
is useful in investigating different designs for data transmission while providing
temporary input data with which to test mission computing components. The
functionality provided by the stimulation environment components has been improved by
the inclusion of the COTS product STAGE. Through the use of the STAGE/MST Interface,
which takes data from STAGE’s internal data structures and outputs the information in a
format compatible with the AEW&C MST, the AEW&C MST is able to use STAGE for all
ownship sensor and flight modelling. Currently, this provides kinematic data from an
ownship flight model, while an ownship radar model provides target data for all
Distributed Interactive Simulation (DIS) entities it detects.

Of particular use in an experimentation context are the mission computing components,
which are the main utilities for storing and processing local and remote information.
Within the AEW&C MST the Track Manager is responsible for maintaining the tactical
state of the AEW&C aircraft. It does so through a common repository of tracks and a
collection of capabilities that can be applied to these tracks. The Ownship component
complements the Track Manager by maintaining the kinematic state of the AEW&C
aircraft.

DSTO-TR-2093

46

In addition to maintaining the state of the AEW&C MST, the mission computing
components are responsible for interfacing with the tactical data link gateway, Rosetta. To
achieve this goal two separate components have been created. One transmits the AEW&C
MST’s ownship kinematic state while the other is responsible for receiving tactical data at
periodic intervals.

The interactions of the mission computing components as well as those of other
components are depicted in Figure 5–4. The existing components of the AEW&C MST, and
their interactions with internal and external systems are shown in black, while those
components and interactions in blue represent items yet to be developed. This distinction
highlights the development still required on the tactical data link interface. Tracks
contained within the Track Manager are yet to be forwarded to Rosetta, limiting the
tactical information communicated to other systems such as the Dual Link Simulator with
Extended Capability (DLS-EC). Also separated in Figure 5-4 are the components
contributing to the AEW&C MST’s involvement in modelling and simulation and the
components directly related to mission computing.

Figure 5–4. The AEW&C Mission System Testbed component interactions.

STAGE SIM

Operator

Solipsys TDF

TDF
Adapter

Test Track
Generator

Rosetta
Adapter

Rosetta
TADIL Mesg

DB

Track
Stream
Adapter

DLS-EC

Remote
Track Users

DLS-EC

Track Data
Streams

TADIL Tracks

J-series
Messages

Own Ship PPLI

AEW&C MST

Mission Computing

Modelling & Simulation

Tracker
TBD

DIS
Network

Other Sensor
Models

Remote
Fusion Engine

DIS
Interface DIS PDUs

Sensor Reports

TADIL Tracks

J-series
Messages

Own Ship
Nav

Model

Rosetta
Adapter

Track
Manager

Track Monitor

Scenario Entity
Models

Own Ship
Model

Radar
Model

Own Ship
Status

DSTO-TR-2093

47

6. Summary

The transformation of the Australian Defence Force (ADF) into a net centric force requires
the adaptation of the way systems are procured, built and used. This report has argued
that in order for this transformation to be successful, experimentation is required with the
technologies that underpin Network Centric Warfare (NCW).

The Net Warrior Initiative is enabling such experimentation to occur by implementing a
network of real systems, high fidelity testbeds and simulators across DSTO and wider
Defence. Net Warrior aims to address new and evolving net centric capabilities and
mission system technologies to enhance the joint warfighting capability of the ADF.
Multiple DSTO divisions are participating in Net Warrior and Boeing Australia is involved
through an Interactive Project Agreement concerning mission systems in NCW
environments.

The Airborne Early Warning & Control Mission System Testbed (AEW&C MST) is one of
the nodes in Net Warrior and has been developed to support the Wedgetail AEW&C
capability. The AEW&C MST supports the evaluation of Wedgetail mission computing
and enables the exploration of technologies that are relevant to net centric software
architectures and mission systems.

Technologies that enable robust mission systems to be developed and implemented for
NCW environments include component-based systems, Service Oriented Architectures
(SOAs), middleware and frameworks. The AEW&C MST is built on such technologies
through the use of the Common Object Request Broker Architecture (CORBA) and the
Boeing Australia Software Architecture Framework (SAF). Experimentation using the
AEW&C MST will provide insight into how information can be agile and adaptable in
NCW environments. Such experimentation will enable DSTO to provide advice to Defence
regarding the implementation of particular NCW concepts and technologies, and the
acquisition of systems and platforms that interoperate.

DSTO-TR-2093

48

7. References

ACE 2006—see Overview of ACE (2006).

Alberts, D.C., Garstka, J. J. & Stein, F.P. (1999) Network Centric Warfare: Developing and
Leveraging Information Superiority, 2nd edition, DoD C4ISR Cooperative Research Program
(CCRP), Washington, DC, United States.

Alberts, D.C., Garstka, J. J., Hayes, R. E. & Signori, D. A. (2001) Understanding Information
Age Warfare, DoD C4ISR Cooperative Research Program (CCRP), Washington, DC, United
States.

Alberts, D.C. & Hayes, R. E. (2003) Power to the Edge, DoD C4ISR Cooperative Research
Program (CCRP), Washington, DC, United States.

Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J. Seacord, R. &
Wallnau, K. (2000) Volume II: Technical Concepts of Component-Based Software Engineering, 2nd
edition, CMU/SEI-2000-TR-008, ESC-TR-2000-007, Carnegie Mellon Software Engineering
Institute, Pittsburgh.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996) Pattern-Oriented
Software Architecture: A System of Patterns, vol. 1, Wiley.

Boeing Australia (2005) Software Architecture Framework, Brisbane, Australia.

Boyd, J. R. (1996) The Essence of Winning & Losing (accessed 2 April 2007), URL:
http://www.belisarius.com/modern_business_strategy/boyd/essence/eowl_frameset.ht
m.

Brown, A., Johnston, S. & Kelly, K. (2002) Using Service-Oriented Architecture and
Component-Based Development to Build Web Service Applications, Rational Software
Corporation.

Cebrowski, A. K. & Garstka, J. J. (1998) Network-Centric Warfare: Its Origin and Future, U.
S. Naval Institute Proceedings Magazine, January.

Cebrowski, A. K. (2003) Network-Centric Warfare: An Emerging Response to the
Information Age, Military Technology, MILTECH 5/2003, pp. 16–22.

Chase, G., Dall, I. & Gani, R. (2006) Implications of the Global Information Grid for Australian
Network Centric Warfare, DSTO-TN-0697, Defence Science & Technology Organisation,
Edinburgh, Australia.

Chief Information Officer Group (2006) DIEMAN, vol. 3, part 1, Department of Defence,
Canberra, Australia.

http://www.belisarius.com/modern_business_strategy/boyd/essence/eowl_frameset.htm
http://www.belisarius.com/modern_business_strategy/boyd/essence/eowl_frameset.htm

DSTO-TR-2093

49

Chim, L., Moon, T., O’Brien M. & Robinson, K. (2007) Networked Joint Task Force (NJTF)
2015 Study: Definition and Concept, DSTO-TR-1952, Defence Systems Analysis Division,
Defence Science & Technology Organisation, Edinburgh, Australia.

CIOG 2006—see Chief Information Officer Group (2006).

CORBA 2006—see Overview of CORBA (2006).

Corman, D. & Gossett, J. (2001) Weapons System Open Architecture – Using Emerging
Open System Architecture Standards to Enable Innovative Techniques For Time Critical
Target Prosecution, in the Proceedings of the 20th Digital Avionics Systems Conference, 14 to 18
October, pp. 9.E.4–1 to 9.E.4–8, IEEE.

Cureton, K. (2007) Overcoming Roadblocks to Interoperability Using NCOIC Tools: Service
Oriented Architectures, Network Centric Operations Industry Consortium, United States.

DCIO 2004—see Defense Chief Information Officer (2004).

Defense Chief Information Officer (2004) Net-Centric Checklist Version 2.1.3, Department of
Defense, Washington, DC, United States.

Dekker, A. (2005) A Taxonomy of Network Centric Warfare Architectures, Proceedings of
the Systems Engineering, Test & Evaluation Conference (SETE), Brisbane, Australia, 7 to 9
November.

DeMichiel, L. & Keith, M. (2006) Enterprise JavaBeans Version 3.0 (Specification), Sun
Microsystems.

DFW (2004)—see Directorate of Future Warfighting (2004).

DGCP (2006)—see Director General Capability and Plans (2006).

DGCP (2007)—see Director General Capability and Plans (2007).

Dikel, D., Kane, D. & Wilson, J. (2001) Software Architecture Organizational Principles and
Patterns, Pretence Hall, 2001.

Director General Capability and Plans (2006) Explaining NCW, Defence Publishing Service,
Department of Defence, Canberra, Australia.

Director General Capability and Plans (2007) NCW Roadmap 2007, Defence Publishing
Service, Department of Defence, Canberra, Australia.

Directorate of Future Warfighting (2004) Enabling Future Warfighting: Network Centric
Warfare, ADDP–D.3.1, Defence Publishing Service, Department of Defence, Canberra,
Australia.

DoD Architecture Framework Working Group (2004) DoD Architecture Framework Version
1.0 Deskbook, Department of Defense, Washington, DC, United States.

DSTO-TR-2093

50

DoDAF WG (2004)—see DoD Architecture Framework Working Group (2004).

Doerr, B. & Sharp, D. (1999) Freeing product line architectures from execution
dependencies (avionics software), in the Proceedings of the 18th Digital Avionics Systems
Conference, 24 to 29 October, pp. 9.C.2–1 to 9.C.2–8, IEEE.

D'Souza, D. & Wills, A. (1999) Objects, Components, and Frameworks with UML: the Catalysis
Approach, Addison-Wesley Longman Publishing.

DSTO NCW Tiger Team 2 (2005) Designing a Force for Network-Centric Warfare, DSTO-GD-
0431, Defence Science & Technology Organisation, Edinburgh, Australia.

Ehrmanntraut, R. (2003) System-of-System Integration of Air-Ground Telecommunications
with the Software Connector, EUROCONTROL Experimental Centre (EEC), in the 22nd
Digital Avionics Systems Conference, 12 to 16 October, pp. 6.A.3 to 61–12, IEEE.

Fewell, M.P. & Hazen, M. G. (2003) Network-Centric Warfare – Its Nature and Modelling,
DSTO-RR-0262, Maritime Operations Division, Defence Science & Technology
Organisation, Edinburgh, Australia.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995) Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley.

Heineman, G. & Councill, W. (2001) Component-Based Software Engineering Putting the Pieces
Together, Addison-Wesley.

Henning, M. & Vinoski, S. (1999) Advanced CORBA Programming with C++, Addison-
Wesley Professional.

Hill, R. (2003) Network Centric Warfare, address to ADF Network Centric Warfare
Conference, Canberra, Australia, 20 May (accessed 19 March 2007), URL:
http://www.minister.defence.gov.au/HillSpeechtpl.cfm?CurrentId=2770

Hue, M. (2007) A Methodology and Metrics for Evaluating NCW Implementation, DSTO-RR-
0324, Command and Control Division, Defence Science & Technology Organisation,
Edinburgh, Australia.

Huston, S., Johnson, J. & Syyid, U. (2003) The ACE Programmer’s Guide: Practical Design
Patterns for Network Systems Programming, Addison-Wesley Professional.

Keus, H. E. (2005) Netforce Principles: An Elementary Foundation of NEC and NCO, in
the 10th International Command and Control Research and Technology (CCRT) Symposium,
McLean, Virginia, U. S., 13 to 16 June, U. S. Department of Defense Command and Control
Research Program.

Knight, M., Vencel, L. & Moon, T. (2006) A Network Centric Warfare (NCW) Compliance
Process for Australian Defence, DSTO-TR-1928, Defence Science & Technology Organisation,
Edinburgh, Australia.

http://www.minister.defence.gov.au/HillSpeechtpl.cfm?CurrentId=2770

DSTO-TR-2093

51

Krause, M. (2005) The Case for Minimum-Mass Tactics in the Australian Army, Australian
Army Journal, II(2), Land Warfare Studies Centre, Canberra, Australia, pp. 69–79.

Krishnamurthy, L. (2006) Comparative Assessment of Network-Centric Software Architectures,
Masters thesis, Virginia Polytechnic Institute and State University.

Lawrie, G., Capon, S., Cutler, P., Filippidis, A., Iob, M., Pearce, B., Priest, T., Rockliff, S.,
Skinner, M., Temple, P., Tweedale, J. & White, K. (2005) Wedgetail Evolution: Soaring to
Greater Heights?, in Proceedings of the 11th Australian International Aerospace Congress,
Melbourne, Australia, 13 to 15 March, Engineers Australia.

Lea, D. (1999) Concurrent Programming in Java: Design Principles and Patterns, Addison-
Wesley.

Lewis, G. & Wrage, L. (2004) Approaches to Constructive Interoperability, CMU/SEI-2004-TR-
020, Carnegie Mellon University Software Engineering Institute, United States.

Logan, B. (2003) Technical Reference Model for Network-Centric Operations, CrossTalk:
The Journal of Defense Software Engineering, August, pp. 21–5.

Lough, R. (2006) C2 and Australia’s Approach to NCW, in the C4I Asia Conference,
Singapore, 20 February, Asian Aerospace.

McKenna, T., Moon, T., Davis, R. & Warne, L. (2006) Science and Technology for
Australian Network Centric Warfare: Function, Form and Fit, Australian Defence Force
Journal, 170, pp. 62–76.

Microsoft Developer Network (2007) .NET Framework 3.0 (accessed 27 April 2007),
http://msdn2.microsoft.com/en-us/netframework/default.aspx.

Moon, T. (2006) Are Networked and Net-Centric the Same?, in the Defence Experimentation
Symposium, Sydney, Australia, 28 to 30 March, Defence Science and Technology
Organisation.

MSDN (2007)—see Microsoft Developer Network (2007).

NCIOF (2005)—see Net-Centric Operations Industry Forum (2005).

Net-Centric Operations Industry Forum (2005) Industry Best Practices in Achieving Service
Oriented Architectures (SOA).

Object Management Group (2004) Common Object Request Broker Architecture: Core
Specification Version 3, Object Management Group.

O’Brien, L., Bass, L. & Merson, P. (2005) Quality Attributes and Service-Oriented Architectures,
CMU/SEI-2005-TN-014, Carnegie Mellon University Software Engineering Institute,
United States.

DSTO-TR-2093

52

Office of the Secretary of Defense (2001) Network Centric Warfare: Department of Defense
Report to Congress, Department of Defense, Washington, DC, United States.

OMG (2004)—see Object Management Group (2004).

OSD (2001)—see Office of the Secretary of Defense (2001).

Overview of ACE (2006) (accessed 27 April 2007),
http://www.cs.wustl.edu/~schmidt/ACE-overview.html.

Overview of CORBA (2006) (accessed 27 April 2007),
http://www.cs.wustl.edu/~schmidt/corba-overview.html.

Paunicka, J., Mendel, B. & Corman, D. (2001) The OCP: An Open Middleware Solution for
Embedded Systems, in the Proceedings of the American Control Conference, 25 to 27 June, vol.
5, pp. 3445–50, IEEE.

PGAD (2002)—see Policy Guidance and Analysis Division (2002).

Policy Guidance and Analysis Division (2002) Future Warfighting Concept, ADDP–D.02,
Defence Publishing Service, Department of Defence, Canberra, Australia.

Rising, L. (ed.) (2001) Design Patterns in Communication Software, Cambridge University
Press.

Schmidt, D., Stal, M., Rohnert, H. & Buschmann, F. (2000) Pattern Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, vol. 2, Wiley.

Schmidt, D. & Buschmann, F. (2003) Patterns, Frameworks, and Middleware: Their
Synergistic Relationships, in the Proceedings of the 25th Software Engineering Conference, 3 to
10 May, pp. 694–704, IEEE.

SoSECE (2007)—see System-of-Systems Engineering Center of Excellence (2007).

System-of-Systems Engineering Center of Excellence (2007) SoS Engineering,
http://www.sosece.org/index.cfm?fuseaction=4F68D291-802C-E84F-68643FD05F21FFB4,
(accessed 25 April 2007).

Szyperski, C. (1998) Component software: Beyond Object-Oriented Programming, Addison-
Wesley.

US Army (2004) Future Combat Systems 18+1+1 Whitepaper, United States Department of the
Army.

US Department of Defense (2004) Net-Centric Operations and Warfare Reference Model
(NCOW RM), in Defense Acquisition Guidebook (accessed 3 April 2007), URL:
http://akss.dau.mil/dag/GuideBook/IG_c7.2.1.4.asp.

US DoD (2004)—see US Department of Defense (2004).

http://www.cs.wustl.edu/~schmidt/ACE-overview.html
http://www.cs.wustl.edu/~schmidt/corba-overview.html
http://www.sosece.org/index.cfm?fuseaction=4F68D291-802C-E84F-68643FD05F21FFB4
http://akss.dau.mil/dag/GuideBook/IG_c7.2.1.4.asp

DSTO-TR-2093

53

US JFC (2001)—see US Joint Forces Command (2001).

US Joint Forces Command (2001) Global Information Grid (GIG), Capstone Requirements
Document JROCM 134-01, Norfolk, VA, United States.

Vencel, L. (2006) Towards Establishing a Set of Australian DoD Net Centric Standards, DSTO-
CR-2006-0200, Defence Systems Analysis Division, Defence Science & Technology
Organisation, Canberra, Australia.

DSTO-TR-2093

54

Appendix A: AEW&C Mission System Testbed
Components

Two types of components exist within the Airborne Early Warning & Control Mission
System Testbed (AEW&C MST): (1) architectural components within the component-based
software engineering (CBSE) development methodology discussed in Section 4.1 and (2)
Commercial-Off-The–Shelf (COTS) components. The interfaces of architectural
components conform to the component model of the Software Architecture Framework
(SAF) and have been developed specifically for the AEW&C MST. These components can
be grouped according to their roles of mission computing, stimulation and monitoring.
The native interfaces of COTS components do not conform to the SAF component model
and are identified separately.

A.1. Mission Computing

Mission computing components represent adaptations of architectural components that
exist in the AEW&C Mission Computing Subsystem (MCS).

A.1.1 Track Manager

The Track Manager is responsible for maintaining the tactical state of the AEW&C MST. It
does so through a repository of tracks and a collection of capabilities that can be applied to
manage tracks. This behaviour can be compared to patterns associated with component
technologies employing containers13, in which components of a single type can be added,
removed, located and returned. The track objects managed by the Track Manager have an
interface defined in the Interface Definition Language (IDL), which provides
independence from the programming language implementation and supports integration
of separate applications and heterogeneous systems [Henning & Vinoski 1999].

The Track Manager interface supports the dynamic nature of tracks by allowing updates
to occur on its stored collection. These updates are handled through a Fused Track
Updater, utilising an Active Object pattern14. The Fused Track Updater separates the track
repository update from the general execution of the Track Manger, permitting internal
processing and requests from other clients to occur concurrently. The Active Object
pattern is supported by the SAF using a Runnable object, which provides facilities for the
execution of a Fused Track Updater through inheritance. The SAF Runnable object is
similar in nature to a Java Runnable, which provides concurrent execution via a separate
thread.

13 Home in CORBA 3 [OMG 2004], EJBHome in Enterprise Java Beans [DeMichiel & Keith 2006],
and Container in .NET [MSDN 2007].
14 An Active Object ‘…decouples method execution from method invocation to enhance
concurrency’ [Rising 2001, p. 347].

DSTO-TR-2093

55

A requirement of the Track Manager is to handle multiple update requests
simultaneously. Simply being multi-threaded does not guarantee efficiency in the
execution or the handling of these requests, leading to the employment of the
Leader/Followers pattern as a hand-off strategy [Schmidt et al. 2000]. To accommodate the
Leader/Followers pattern a thread pool is required. Although a Singleton [Gamma et al.
1995] thread pool is available through the SAF, a controllable one is useful in this
application, leading to the instantiation of a thread pool within the scope of Fused Track
Updater. The Leader/Followers pattern permits the Fused Track Updater’s threads to take
turns processing requests to improve the liveliness of the Track Manager throughout the
update process.

To manage the lifecycle of a track object, the Track Manager requires mechanisms for the
removal and deactivation of tracks from the repository. Data associated with a track object
is volatile and dynamic and therefore becomes useless to the Track Manager if not
updated periodically. These time-expired tracks are removed through a track eviction
mechanism, which itself employs an Active Object pattern for parallel execution.

The Track Manager must also provide an interface that allows clients to access tracks that
are managed and contained by the Track Manager. This interface encapsulates iteration
over the track container, employing the Façade pattern [Gamma et al. 1995]. This provides
independence from the Track Manager’s internal representation of a track and ensures
access occurs within the context of the Track Manager’s internal read/write locking
mechanisms. These locking mechanisms ensure the containment remains consistent
despite the volatile nature of the data.

A.1.2 Rosetta Adapter

The AEW&C MST makes use of the COTS tactical gateway Rosetta, described in Section
A.4.2, to interface to Tactical Data Link (TDL) networks. Use of this software reduces the
development needs of the AEW&C MST, which otherwise would have incorporated
coding of data link message sets and the handling of data from varying hardware
interfaces. Rosetta isolates the user from these details, enabling programmers to focus on
Rosetta’s Real-Time Query Language (RQL), a language similar in many respects to the
Sequential Query Language (SQL) associated with regular databases. RQL enables the
integration of different TDLs into the experimental environment of the AEW&C MST. This
forms the basis of two Rosetta clients, which interact with the rest of the AEW&C MST as
shown in Figure 5–4.

The first Rosetta client allows data to flow from the AEW&C MST to the track containment
of a remote Rosetta Server. Currently, this supports the transmission of the AEW&C’s
ownship data, providing information equivalent to that observed normally in a tactical
situation. Extension of this interface will enable the transmission of other information,
such as surveillance data.

The second Rosetta client permits data flow in the opposite direction, from a remote
Rosetta server to the AEW&C MST. Through RQL statements, this client represents a
source of tactical information for the AEW&C MST, on which the AEW&C MST can

DSTO-TR-2093

56

periodically poll for updated track data. To external systems the client represents a tactical
information sink and facilitates the flow of data from potentially many systems to the
AEW&C MST.

A.1.3 Ownship Status

The Ownship component maintains the kinematic state of the aircraft represented by the
AEW&C MST. Access to this data is provided through an interface defined in IDL and
updates occur through a callback. The Ownship employs the Home pattern to gain access
to the component generating this kinematic data, which for example could be registered
with Air Vehicle (Section A.2.2) to receive regular kinematic data updates.

A.2. Stimulation Environment

The stimulation environment components represent information sources that exercise
scenarios with the AEW&C MST.

A.2.1 Track Source Adapter

The Track Source Adapter is an abstract entity for input sources. Track input sources
typically come in many forms, which necessitates the transformation to a common
behavioural model for the stimulation of the Track Manager (Section A.1.1). This is
achieved through the use of a Strategy pattern15. Conforming to this pattern, a Track
Generation Strategy provides a common abstract interface for defining a track, with the
implementation of the track definition unique to the particular track source.

Track data is provided to the Track Manager through a separate class, a Track Writer,
using an Active Object pattern. The Track Writer Active Object decouples requests to the
Track Manager from any internal processing required on the part of the Track Source
Adapter’s concrete implementation. This processing is likely to maintain the state of those
tracks under the concrete implementation’s control, and is able to execute concurrently
with the Track Writer to remove any dependencies on the possibly remote calls to the
Track Manager.

The Test Track Generator provides a concrete implementation of the abstract Track Source
Adapter for the generation and maintenance of random tracks. This component defines its
own strategy, a Test Track Generation Strategy, for the creation of tracks. Its concrete
implementation produces a defined number of tracks with random data. This random data
is generated to conform to the common representation outlined by the Track Manager in
Section A.1.1.

The Test Track Generator is responsible for the maintenance as well as the generation of
random tracks, requiring local storage to maintain internal state. This storage is similar to
that within the Track Manager and periodic updates occur to each stored track in

15 A Strategy pattern can be categorised as a family of encapsulated algorithms that are made
interchangeable [Gamma et al. 1995].

DSTO-TR-2093

57

accordance with its randomly generated initial conditions. Data stored within the Track
Manager’s container must remain consistent with these updates and thus results in further
requests made to the Track Manager. As such, those arguments made for the use of a
Track Writer Active Object are valid here, leading to the creation of a Track Updater
Active Object.

A.2.2 Air Vehicle Model

The Air Vehicle component is a simple model of an aircraft, maintaining aircraft position
with basic limits on speed, altitude, acceleration, turn-rate and climb-rate. A pilot
command interface is defined to control each of these attributes and thus the basic
movement of the modelled aircraft, which can also be configured manually prior to
deployment.

The Air Vehicle component is strictly stimulus for the mission computing elements of the
AEW&C MST, therefore requiring the Ownship Status to be notified of any necessary
updates to the state of the AEW&C MST. Consistent with other component requests, Air
Vehicle contains an Updater that is an Active Object for this purpose. As the Updater itself
does not contain any state data, the Home pattern is employed to access the relevant
kinematic data within Air Vehicle.

A.2.3 STAGE

Distributed Information Simulation (DIS) is one method by which simulation can
stimulate AEW&C MST experimentation. A DIS interface is provided for the AEW&C
MST by a COTS product, the Stimulation Toolkit and Generation Environment (STAGE).
STAGE is described in more detail in Section A.4.1. Currently version 5 has been, and will
be further integrated into the AEW&C MST. Version 4 will be reverted to for user modules
and simulation models received from the AEW&C program that are incompatible with the
latest version of STAGE. STAGE version 5 provides an enhanced set of DIS Protocol Data
Units (PDUs) over its predecessor, with the inclusion of the Electromagnetic Emission
PDU, and supports extension to include any other type of PDU.

The STAGE interface to the AEW&C MST acts as a source of information for simulation
entities. This enables the AEW&C MST to observe and interact with scripted platforms and
events, all under the control of a scenario running internally within STAGE. Through its
DIS interface, STAGE also has the ability to receive information about entities scripted by
other external simulations, thus forming the basis for the AEW&C MST’s inclusion in
distributed simulations. Further development will automate the activation of the STAGE
DIS interface, include additional simulation models and incorporate track data fusion.

DSTO-TR-2093

58

A.3. Monitoring

Monitoring components provide interfaces for observing the information received and
stored by the other components of the AEW&C MST.

The Track Monitor is a simple component that periodically accesses and displays the
details of all tracks in the Track Manager to an operator. The Track Monitor itself is
responsible for activating two Active Objects, each tasked with presenting alternative
outputs.

Track Streamer is one of the Active Objects activated by the Track Monitor. Unlike other
Active Objects described previously it does not incorporate the Home pattern, and
therefore does not have any reference to the Track Monitor. The Track Streamer defines an
output stream within the SAF as its means for output, which is a common interface for
writing data. This output stream conforms to a push model for writing, indicating that it
knows the identity of the receiver before pushing the message. A callback is defined to
encapsulate the writing of tracks to this output stream.

TDFAdapter is the second Active Object activated by the Track Monitor. Like the Track
Streamer is does not employ the Home pattern and does not have any reference to the
Track Monitor. The TDFAdapter employs an Adapter Pattern as described in Section A.4
to provide a service oriented interface to the COTS Tactical Display Framework (TDF)
(Section A.4.3). This adaptation is encapsulated within a callback to ensure the necessary
data conversions take place for accurate representation on the TDF Graphical User
Interface (GUI).

A.4. Commercial Off-The-Shelf

A COTS component is distinguished from those developed specifically for the AEW&C
MST by its lack of conformance to a component model. Fitting the CBSE general
description of a component, COTS components provide both behaviour and coordination,
thus specifying not only what a component does but also how it interacts. However, a
COTS component implements these details in a way that is unique to the product and not
bound by component interactions or other architectural constraints [Bachmann et al. 2000].

COTS components are generally, but not always, produced by a third party. This makes
editing the native interfaces difficult. However, an adapter class can be written to translate
the proprietary nature of the software. An adapter allows access to the desired behaviour
of a component without necessarily using its expected interface and, in experimentation
with the AEW&C MST, normalises the behaviour of the COTS component to adopt a
Service Oriented Architecture (SOA) approach. This SOA approach leads to the
production of a service that conforms to the layered communication model discussed in
Section 4 and preserves the existing capabilities of the component. This alternative
interface interacts directly with the middleware layer and enables platform abstraction to
be preserved. Examples of these adapters are discussed in Section A.4.2 and Section A.4.3
as applied to Rosetta and TDF respectively.

DSTO-TR-2093

59

A.4.1 STAGE

STAGE is a software tool that supports many utilities in the tactical domain. Its uses
include training and evaluation, analysis of tactical scenarios and systems, and the
simulation of real and synthetic systems. To support these utilities STAGE provides the
facility to build and display real-time synthetic environments consisting of entities
interacting through detection, engagement and destruction. STAGE is highly customisable
with several techniques available for the extension of various aspects of the synthetic
environment as well as its own simulation engine.

STAGE consists of a number of applications whose interactions with each other and
internal and external data sources are shown in Figure A–1.

Figure A–1. Relationship of STAGE applications. Source: [CAE 2006]

The STAGE applications are described as follows:

• Scenario Manger (SM): Provides a number of environments to assist each phase of a
scenario’s lifecycle. The Scenario and Database editors handle the development and
assembly of components for a scenario, while the Runtime Environment monitors and
controls its execution. Embedded within the Runtime Environment is the Situation
Awareness Display (SAD), which is responsible for visualising the simulation.

DSTO-TR-2093

60

Additional behaviour and extensions to scenario elements are managed through the
script and mission editors.

• Simulation Engine (SIM): The simulation of the synthetic environment. It includes a
simulation engine and modules that model the behaviour of entities within the
synthetic environment.

• Integrated Development Environment (IDE): An interface allowing for the
modification of simulation data structures.

• Map Generator (Genmap): Converts maps from different data formats into STAGE’s
proprietary format.

• Logger: Supports scenario review through recording and playback facilities.

A.4.2 Rosetta

Rosetta is a software package that allows processing, translation and forwarding of real-
time sensor, navigation and data link data. To accomplish and assist this objective a
number of applications are provided, each discussed below.

The Rosetta engine can be subdivided into individual software modules. These modules
include a text parsing engine, RQL and a Forwarding Rules Object Gateway (FROG).

The text parsing engine eliminates the need for hard coding by defining Interface Control
Documents (ICDs) as plain ASCII files. These are parsed on initialisation to generate a
normalised form inside a Real-Time Track Database; a store for all tactical data
encountered by the system. Track data in the database is accessed using RQL. This permits
users to request details on any track or command via queries on the common field names.
The FROG handles forwarding from one tactical data link message set to another,
conforming to rules generated from the relevant standards.

The Joint Moving Map Tactical Information Display System (JMMTIDS) is a command and
control (C2) GUI displaying in real-time and providing control over information from a
variety of data links. It also supports a mission playback facility, where data can be
recorded and then played back with various timing controls.

The Rapid Loader enables users to control Link 16 terminals through network initialisation
loads and a variety of diagnostic tools. The Rapid Loader can also act as a MIL-STD-155316
bus controller, providing further control of terminal characteristics such as JTIDS17 Unit
(JU) number.

The Scenario Generation Toolset (SGT) is a data link scenario generator capable of creating
a scenario incorporating multiple links in an offline GUI. SGT also supports the capability
to add link data into the Rosetta database in real-time.

16 A military standard that defines the electrical and protocol characteristics of a data bus.
17 Joint Tactical Information Distribution System.

DSTO-TR-2093

61

A.4.3 Tactical Display Framework

The TDF is a Java based and machine independent tactical display system designed for
applications such as C2 and air traffic management. It is highly adaptable at both a user
and application level, with features easily enabled or disabled for particular operators, and
custom plug-ins added to change or provide new functionality. From a tactical
perspective, a variety of mapping products are supported, as are multiple symbol sets and
hooking capabilities.

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

Exploring a Net Centric Architecture using the Net Warrior
Airborne Early Warning and Control Node

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Kate Foster, Adam Iannos, Geoff Lawrie, Peter Temple and Brad
Tobin

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh South Australia 5111 Australia

6a. DSTO NUMBER
DSTO-TR-2093

6b. AR NUMBER
AR-014-085

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
December 2007

8. FILE NUMBER
2007/1036634/1

9. TASK NUMBER
07/044

10. TASK SPONSOR
AEW&CSPO

11. NO. OF PAGES
61

12. NO. OF REFERENCES
63

13. URL on the World Wide Web

http://www.dsto.defence.gov.au/corporate/reports/DSTO-TR-2093.pdf

14. RELEASE AUTHORITY

Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS

network centric warfare; airborne mission systems; experimentation; test beds; software architecture; middleware; object-oriented
system architecture; interoperability

19. ABSTRACT
Network Centric Warfare experimentation is required in order to transform the Australian Defence Force into a
net centric force. One area of experimentation is net centric software architectures, particularly component-
based systems and middleware. The Airborne Early Warning & Control Mission System Testbed (AEW&C
MST) enables such experimentation to be conducted and is overviewed in this report. The AEW&C MST is also
one node in the Net Warrior Initiative, which aims to conduct net centric experimentation with real systems,
testbeds and simulators across DSTO. This report discusses Net Warrior and the role of the AEW&C MST as
the AEW&C node.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Contents
	Acknowledgements
	Abbreviations
	1. Introduction
	2. Network Centric Warfare and Australian Defence
	2.1 Overview
	2.2 Net Centricity
	2.3 Network Centric Warfare
	2.4 Australian Network Centric Warfare
	2.5 Science and Technology for Australian Network Centric Warfare
	2.6 Summary

	3. Net Warrior and the AEW&C Node
	3.1 Net Warrior
	3.2 AEW&C Node in Net Warrior
	3.2.1 Wedgetail AEW&C
	3.2.2 AEW&C Mission System Testbed Motivation
	3.2.3 AEW&C Mission System Testbed Objectives

	3.3 Summary

	4. Component-based Architectures and Middleware
	4.1 Overview
	4.2 Engineering Approaches and Methodologies
	4.2.1 Evolution of Engineering Approaches
	4.2.2 Defence Architecture Framework
	4.2.3 Component-based Software Engineering
	4.2.3.1 Components
	4.2.3.2 Component-based Design Pattern
	4.2.3.3 Component Models
	4.2.3.4 Frameworks

	4.3 Architectural Approaches and Reference Models
	4.3.1 Software Architecture
	4.3.2 Service Oriented Architectures
	4.3.3 Technical Reference Models

	4.4 Reference Architectures, Patterns, Middleware and Frameworks
	4.4.1 Reference Architectures
	4.4.2 Patterns
	4.4.3 Middleware
	4.4.4 Frameworks

	4.5 Summary

	5. AEW&C Mission System Testbed
	5.1 AEW&C Mission System Testbed Architecture
	5.1.1 Common Object Request Broker Architecture
	5.1.2 Software Architecture Framework

	5.2 AEW&C Mission System Testbed Overview

	6. Summary
	7. References
	Appendix A: AEW&C Mission System Testbed Components
	A.1. Mission Computing
	A.1.1 Track Manager
	A.1.2 Rosetta Adapter
	A.1.3 Ownship Status

	A.2. Stimulation Environment
	A.2.1 Track Source Adapter
	A.2.2 Air Vehicle Model
	A.2.3 STAGE

	A.3. Monitoring
	A.4. Commercial Off-The-Shelf
	A.4.1 STAGE
	A.4.2 Rosetta
	A.4.3 Tactical Display Framework

	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

